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Abstract
A very important computational problem is how to organize information. In particular, the
contemporaneous world has been presented with a new class of problem, to handle a very
large amount of data, called Big Data Problem. Typical data structures have O(lg n) time
cost, where n is the size of the database and lg is the binary logarithm (log2). However, if
n is a very large number, like a googol (10100) or a googolplex (1010100), data structures of
O(lg n) still have a hard cost to solve a problem. To address this problem, a data structure
named van Emde Boas Tree (vEBt) could be used. A vEBt has O(lg lgU) worst case time
cost (where U is the data universe size), but this low cost demands a lot of memory. The
size of memory to implement a typical vEBt is so big that there is no any today’s machine
that could just instantiate an empty vEBt of 2128 universe size. This research proposes a
strategy to implement a class of distributed van Emde Boas tree able to work with huge
data mass (big data). The time cost still is O(lg lgU) and a computer cluster can be used
to run this distributed vEBt, where each cluster’s node needs to have very little memory.
As we show on experiments, with our solution, now even cheap 4 GB machines can handle
up to vEB(2217 = 2131,072 ≈ 1039,457) trees, which is much bigger than a googol (10100).

Keywords: Algorithms. data structure. distributed systems. van Emde Boas tree. big
data.





Resumo
Organizar informações é um problema computacional muito importante. Em particular,
no mundo contemporâneo, existe uma nova classe de problemas, relativa ao tratamento de
gigantescas quantidades de dados, conhecida como Big Data Problem. Estruturas de dados
convencionais apresentam custo de tempo de O(lg n), onde n é quantidade de elementos na
base de dados e lg é o logaritmo binário (log2). Contudo, se n é um número muito grande,
como um googol (10100) ou um googolplex (1010100), estruturas de dados de custo O(lg n)
ainda têm um alto custo para resolver o problema. Para tratar desta questão, uma estrutura
de dados chamada van Emde Boas Tree (vEBt) poderia ser utilizada. A vEBt tem custo
em tempo O(lg lgU) no seu pior caso (onde U é o tamanho de universo), mas este baixo
custo demanda muita memória. A quantidade de memória para implementar uma vEBt
convencional é tão grande que não existe nenhuma máquina nos dias atuais que poderia
sequer instanciar uma vEBt vazia com universo de 2128. Nesta pesquisa foi proposta uma
estratégia para implementar uma classe de árvore de van Emde Boas distrubuída capaz de
trabalhar com grandes massas de dados (big data). O seu custo permanece O(lg lgU) e
um cluster de máquinas pode ser utilizado para executar esta vEBt distribuida, onde cada
nó do cluster precisa ter apenas uma pequena quantidade de memória. Como foi mostrado
em experimentos, com a solução proposta, mesmo simples máquinas com 4 GB podem
indexar árvores vEB(2217 = 2131,072 ≈ 1039,457), que é bem maior que um googol (10100).

Palavras-chave: algorítimos. estrutura de dados. sistemas distribuidos. árvore de van
Emde Boas. big data.
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1 Introduction

1.1 Justification

The age of Big Data has arrived (LABRINIDIS; JAGADISH, 2012), (MERVIS,
2012), (COMMUNITY. . . , 2008), (ELDAWY; MOKBEL, 2015). Every day, 2.5 quintillion
bytes of data are created, and 90 percent of the data in the world today were produced
within the past two years (IBM, )(SINTEF, 2013).

There are numerous definitions of Big Data (MAURO; GRECO; GRIMALDI,
2015)(HASHEM et al., 2015)(WARD; BARKER, 2013). And all of then directly or
indirectly refers to the V’s of Big Data, “volume", “velocity" and “variety". Volume refers
to data size and how it grows. Velocity refers to the speed data is generated (written)
and retrieved (read). And Variety refers to heterogeneity embracing different types and
different sources of data. Ward and Barker (WARD; BARKER, 2013) states that Big
Data as term describing the storage and analysis of large and or complex data sets using
a series of techniques, with NoSQL being one of those tools.

NoSQL (commonly referred to as “Not Only SQL") represents a completely different
framework of databases that allows high-performance processing of information at massive
scale. In other words, it is a database infrastructure that has been very well-adapted
to the heavy demands of big data. The efficiency of NoSQL can be achieved, because,
unlike relational databases that are highly structured, NoSQL databases are unstructured
in nature, trading off stringent consistency requirements for speed and agility. NoSQL
centers around the concept of distributed databases, where unstructured data may be
stored across multiple processing nodes, and often across multiple servers. This distributed
architecture allows NoSQL databases to be horizontally scalable. As data continues to
explode, just add more hardware keeps it up, with no slowdown in performance (RANI;
KUMAR, 2015).

NoSQL database are distributed key/value table stores or a subclass of it, and
provide a lightweight, cost-effective, scalable and available alternative to traditional rela-
tional databases. Today, scalable table stores, such as Google BigTable, Amazon Dynamo,
Apache HBase, Apache Cassandra, Voldemort, Apache Accumulo and Redis(CHEN et al.,
2016), are becoming an essential part of Internet services 1. They are used for high volume
data-intensive applications, such as business analytics and scientific data analysis. In some
cases they are available as a cloud service, such as Amazon’s SimpleDB and Microsoft’s
Azure SQL Services, as well as application platforms, as in Google’s AppEngine and

1 <http://db-engines.com/en/ranking/key-value+store>

http://db-engines.com/en/ranking/key-value+store
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Yahoo’s YQL (SEN; FARRIS; GUERRA, 2013).

Such distributed NoSQL solutions are based on Consistent hash, LSM trees, RB-
trees, B-trees or B+trees(CORMEN et al., 2009). The ones based on hash has good O(1)
time per dictionary operations, i.e. search, insert and delete. While the ones based on
trees may have O(lg n)2 time cost for dynamic set operations, i.e. search, insert, delete,
successor, predecessor, minimum and maximum operations.

In this work we propose the grounds of a novel, highly scalable, solution for a
NoSQL distributed key/value table store, based on van Emde Boas tree, that performs
dynamic set operations in O(lg lgU)3 time.

1.1.1 van Emde Boas trees

The van Emde Boas tree has been proposed in 1975 by Peter van Emde Boas
(BOAS, 1975), (BOAS, 1977), (BOAS; KAAS; ZIJLSTRA, 1976). It has time cost of
O(lg lgU) for search, insert, delete, successor and predecessor operations, and O(1) for
minimum and maximum operations. While it has advantage over regular data structures
that runs in O(lg n) time, it has some drawbacks, like its initial size. Therefore, until now
it hasn’t been used in Big Data technologies.

However, we believe van Emde Boas tree may have its turn in the world of Big
Data and very large databases due to the following advantages.

• Dynamic set operations has the following time cost:

– Its internal structure, that seems to be convenient for clustering. Once an
operation reaches certain node, it does not need the ancestors or sibling nodes
anymore to complete its execution;

– O(lg lgU) - search, insert, delete, successor and predecessor ;

– O(1) - minimum and maximum;

• It is good for range queries. The cost is the number of elements between the two
indexes, multiplied by O(lg lgU);

• It has a cache oblivious structure (DEMAINE, 2002);

• We could take advantage of multicore and network paralalism to boost up speed
(WANG; LIN, 2007)(KUŁAKOWSKI, 2013).

2 “n" is the number of elements present in the tree.
3 “U” is the universe. i.e. The maximum number of elements supported by the tree. In a vEBt the

elements are represented by integer keys from 0 to U-1
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This research is about adapt the van Emde Boas tree to be used as a high scalable
Big Data structure.

In Chapter 3 we will see the original van Emde Boas tree in more details, and in
Chapter 4 we will explain how it has been distributed.

1.2 Objectives

1.2.1 Main Objective

Design and implement a distributed van Emde Boas tree, keeping its original time
cost for dynamic set operations (Subsection 1.1.1), making it suitable to be used as big
data structure.

1.2.2 Specific Objectives

In order to achieve the main objective, the following specific goals should be taken:

1. Design a distributed van Emde Boas tree, that holds its time cost, with the following
characteristics:

a) Increases its size dynamically;

b) Allow any machine to run a vEB tree of any size, i.e. overcome the initial
cluster size limitation;

2. Implement the proposed distributed van Emde Boas Tree;

3. Design and plan correctness and performance experiments;

4. Write test cases and tools for the experiments;

5. Analyze the results and make conclusions.

1.3 Document Structure
This section gives a brief picture of the structured of this document and what is

present on each chapter.

Chapter 2, introduces some challenges we are about to face and spices up the
motivation for this research.

Chapter 3, explores the theory and foundations of a van Emde Boas tree and
reviews few very basic Network and Distributed System concepts.
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In chapter 4, at first, we show our initial approach to design the Distributed
van Emde Boas tree, and analyze it, exposing its limitations, in special, its scalability
restrictions. Then we depict our improved second approach that solves almost all limitations
of the previous one, including scalability restrictions, and then we explore and analyze it,
also showing its weakness.

Chapter 5 describes the performed experiments and finally analyzes the results.

In chapter 6 we make our final conclusions and bring several ideas for future work.

After that, comes the Bibliography, with all references that have been used as
theoretical basis in this research.

And finally, Appendix A documents command line options to run experiments
using our testing program. Appendix B explains the software architecture. Appendix C
gives detailed instruction on how to setup and reproduce the experiments. And Appendix
D has some verbatim copy of some c++ source code, developed during this research, that
may be useful to clarify some concepts brought in this document.
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2 Motivation

2.1 Research problem
The van Emde Boas tree has been proposed in the 70’s (BOAS, 1975)(BOAS,

1977)(BOAS; KAAS; ZIJLSTRA, 1976), since then, despite its low worst-case cost time of
O(lg lgU), has only been used in theory and academy due to its drawbacks:

• its time cost is O(lg lgU), it means the cost is based on the universe size, does not
matter the number of elements currently in the tree;

• the constant part of its time cost may be high, making it not worth for non huge
amount of data;

• high amount of structural data to support the tree even without carrying any satellite
user data, P (U) = (

√
U + 1)P (

√
U) + Θ(

√
(U))1;

• huge startup memory cost of Θ(
√
U) to hold its cluster;

• keys must be non-negative integer numbers2 3.

On the other hand, besides the low time cost of operations (Subsection 1.1.1), the
vEB tree is cache-oblivious structure (DEMAINE, 2002). A cache-oblivious structure, even
unaware of caches levels and sizes, can avoid cache misses. A remote node in a distributed
tree could be considered another cache level.

The proposal of this research is to design and implement a distributed van Emde
Boas tree without loosing the O(lg lgU) time cost, capable of instantiate and run arbitrary
universe sizes, on cheap distributed machines, and also capable of start at a low universe
size and increase it dynamically and efficiently as needed.

By overcoming the huge initial cluster size, and distributing it, we expect to
build the grounds of a new solution that could beat the current NoSQL Key-Value Store
Databases solutions, that uses RB-Trees2, Hashes2, B-Trees2 or B+Trees2 data structure.
1 P(U) is the size cost of a vEB tree of universe size U, the first term represents the summary plus√

U children trees of universe
√

U and the last term is the size of the cluster array of
√

U pointers to
children trees.

2 Sometimes data can be converted into non-negative integers and still preserve the original order, or
closely preserve it. As an example, GeoMesa uses a technique called Space Filling curve to convert
bi-dimensional coordinates into a integer that can be stored in NoSQL database like HBase.

3 <http://www.geomesa.org/>
2 Cormen’s book(CORMEN et al., 2009)

http://www.geomesa.org/
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2.1.1 The three challenges

As we will see in section 2.2, and as stated by Zheng (ZHENG et al., 2015), the
common use cases for Key-Value (KV) stores are large scale data-intensive applications as
they offer high efficiency, scalability, and availability.

For high efficiency, we trust in van Emde Boas structure itself and optimizations
that could be done by taking advantage for multi-core and network parallelism. Although
the concurrent implementation of our distributed vEB tree is out of the scope of this
research. Availability study is also left out in this research due to time constraints.

Then, the focus of this research is on scalability. How to make a van Emde Boas
tree scalable?

The first challenge to make it scalable, is allow it to increase dynamically as the
number of elements grows, actually, in case of van Emde Boas trees, as the maximum
element (or key) grows. Since the original proposed van Emde Boas tree has its max
number of elements fixed by the time of its creation, it is a limitation that we have to
overcome.

The second task, that we need to deal with, is how to make any machine support
vEB trees of any size. As we can see from Table 3, an empty vEB(264) uses 32 Giga Bytes
(billion) for its cluster 4, and an empty vEB(2128) uses 295 Exa-Bytes (quintillion) just to
be instantiated. It is a hard task because we need to replace the cluster array with some
other data structure and keep the array time cost of O(1) for insert, detete and search
operations on the cluster, to keep the original vEB O(lg lgU) time cost for dynamic set
operations.

The third challenge, is to make it distributed. It doesn’t make any sense thinking
of Big Data without think of a distributed structure 5. We need to choose a distributed
design that couples with the others characteristics of our final tree.

On next Chapters we will come back to these three challenges.

2.2 Research Motivation

The Big Data problem is still an open problem and have to many areas on interest
(WANG; YU, 2015), (BELLO-ORGAZ; JUNG; CAMACHO, 2016), (ELSHAWI et al.,
2015). Digital data are collected at an incredible rate, 2.5 quintillion (2.5× 1018) bytes of
data generated every day and 90% of the world’s data were created in the past 2 years
(SINTEF, 2013), (IBM, ).

4 In this context, cluster, has nothing to do with network clusters. Cluster is just an contiguous array
with pointers to children trees.

5 We could change the Operating System kernel to offer distributed memory transparently to processes.
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Figure 1 – Big data interest in Google trends explorer

Interest in “Big Data" term search according <http://www.google.com/trends/explore>

The interest for “Big Data" has increased each year. Illustration 1 shows the
increasing number of search on Google for the “Big Data" term from 2007 to October
2016.

The website <http://www.internetlivestats.com/> shows some interesting live
numbers on Internet, some number are summarized in Table 1:

Internet users in the world 3.48 billion
Number of websites 1 billion

E-mails sent (10 months) 67.9 trillion
Google searches (10 months) 1.4 trillion
Tweets sent (10 months) 410 million

Photos uploaded on Instagram (10 months) 19.2 billion
Skype calls (10 months) 59.8 billion

Internet traffic (10 months) 1 Zetta Bytes

Table 1 – Internet Numbers - <http://www.internetlivestats.com/>

The report of IDC (PRESS. . . , 2016) indicates that the marketing of big data was
about $16.1 billion in 2014. Another report of IDC6 forecasts that it will grow up to $32.4
billion by 2017. The reports7 8 further pointed out that the marketing of big data will be
$46.34 billion and $114 billion by 2018, respectively. Even though the marketing values of

That approach is not considered in this research tough.
6 <http://www.idc.com/promo/thirdplatform/fourpillars/bigdataanalytics>
7 <http://www.eweek.com/database/big-data-market-to-reach-46.34-billion-by-2018.html>
8 <https://www.abiresearch.com/press/big-data-spending-to-reach-114-billion-in-2018-loo>

http://www.google.com/trends/explore
http://www.internetlivestats.com/
http://www.internetlivestats.com/
http://www.idc.com/promo/thirdplatform/fourpillars/bigdataanalytics
http://www.eweek.com/database/big-data-market-to-reach-46.34-billion-by-2018.html
https://www.abiresearch.com/press/big-data-spending-to-reach-114-billion-in-2018-loo
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big data in these researches and technology reports9 10 11 12 13 14 (PRESS. . . , 2016) are
different, these forecasts usually indicate that the scope of big data will be grown rapidly
in the forthcoming future.

In addition to business and marketing, from the results of disease control and
prevention (MAYER-SCHöNBERGER; CUKIER, 2014), medicine and health-care (U. . . ,
2015)(LEVIN; WANDERER; EHRENFELD, 2015)(MONTEITH et al., 2015), business
intelligence (CHEN; CHIANG; STOREY, 2012), and smart city (KITCHIN, ), mining
and oil & gas industry (PERRONS; MCAULEY, 2015), we can easily understand that big
data is of vital importance everywhere.

Also, recently, data has suddenly become the most interesting element for any kind
of scientific analysis. A number of domains, like earthquake simulation, social networking,
climate science, astrophysics, bioinformatics (DEDE et al., 2012)(LANARI, 2015), and
information retrieval, produce data at massive rate than ever before.

This Big Data has created a hindrance in the development route of both research
and industry. Thus, a major tool is required to effectively manage and process this
huge amount of data. Processing of this type of data requires computing power that is
probably impossible for individual computers to provide. So, researchers preferably opt for
parallel/distributed computing techniques (MAITREY; JHA, 2015).

And there isn’t any complete solutions on the road. The rate of information growth
is 10 times every two years (IBM, )(SINTEF, 2013) and according to Moore’s law 15 the
processing power and storage just double every 18 months.

One of the today’s tools to deal with BigData is NoSQL, more specifically when
dealing with some classes of problems, one the tools are NoSQL Key-Value store databases.
Since we do believe in this research we are creating the grounds for a new and more
effective Key-Value store solution, it is interesting to know few common use cases for such
tool 16:

• “Bigness: NoSQL is seen as a key part of a new data stack supporting: big data, big
numbers of users, big numbers of computers, big supply chains, big science, and so
on. When something becomes so massive that it must become massively distributed,
NoSQL is there, though not all NoSQL systems are targeting big. Bigness can be

9 <http://wikibon.org/wiki/v/Big_Data_Market_Size_and_Vendor_Revenues>
10 <http://wikibon.org/wiki/v/Big_Data_Vendor_Revenue_and_Market_Forecast_2012-2017>
11 <http://www.idc.com/promo/thirdplatform/fourpillars/bigdataanalytics>
12 <http://www.eweek.com/database/big-data-market-to-reach-46.34-billion-by-2018.html>
13 <https://www.abiresearch.com/press/big-data-spending-to-reach-114-billion-in-2018-loo>
14 <http://siliconangle.com/blog/2012/02/15/big-data-market-15-billion-by-2017-hp-vertica-comes-

out-1-according-to-wikibon-research/>
15 <https://www.scientificamerican.com/article/moore-s-law-keeps-going-defying-expectations/>
16 <http://highscalability.com/blog/2010/12/6/what-the-heck-are-you-actually-using-nosql-for.html>

http://wikibon.org/wiki/v/Big_Data_Market_Size_and_Vendor_Revenues
http://wikibon.org/wiki/v/Big_Data_Vendor_Revenue_and_Market_Forecast_2012-2017
http://www.idc.com/promo/thirdplatform/fourpillars/bigdataanalytics
http://www.eweek.com/database/big-data-market-to-reach-46.34-billion-by-2018.html
https://www.abiresearch.com/press/big-data-spending-to-reach-114-billion-in-2018-loo
http://siliconangle.com/blog/2012/02/15/big-data-market-15-billion-by-2017-hp-vertica-comes-out-1-according-to-wikibon-research/
http://siliconangle.com/blog/2012/02/15/big-data-market-15-billion-by-2017-hp-vertica-comes-out-1-according-to-wikibon-research/
https://www.scientificamerican.com/article/moore-s-law-keeps-going-defying-expectations/
http://highscalability.com/blog/2010/12/6/what-the-heck-are-you-actually-using-nosql-for.html
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across many different dimensions, not just using a lot of disk space."

• “Massive write performance: This is probably the canonical usage based on Google’s
influence. High volume. Facebook needs to store 135 billion messages a month.
Twitter, for example, has the problem of storing 7 TB/data per day with the
prospect of this requirement doubling multiple times per year. This is the “data is
too big to fit on one node" problem. At 80 MB/s it takes a day to store 7TB so writes
need to be distributed over a cluster, which implies key-value access, MapReduce,
replication, fault tolerance, consistency issues, and all the rest. For faster writes
in-memory systems can be used."

• “Avoid hitting the wall: Many projects hit some type of wall in their course. They’ve
exhausted all options to make their system scale or perform properly and are
wondering, “what next"? It’s comforting to select a product and an approach that
can jump over the wall by linearly scale, using incrementally added resources. At one
time this wasn’t possible. It took custom rebuilding of everything, but that changed.
We are now seeing usable out-of-the-box products that a project can readily adopt."

• “Distributed systems support: Not everyone is worried about scale or performance
over and above that which can be achieved by non-NoSQL systems. What they need
is a distributed system that can span data centers while handling failure scenarios
without a hiccup. NoSQL systems, because they have focused on scale, tend to
exploit partitions, tend not use heavy strict consistency protocols, and so are well
positioned to operate in distributed scenarios."

• “Managing large streams of non-transactional data: Apache logs, application logs,
MySQL logs, clickstreams, etc."

• “Fast response times under all loads"

• “Soft real-time systems where low latency is critical. Games are one example."

• “Sequential data reading"

• “User registration, profile, and session data"

• “Priority queues"

• “Simple time-series with roll-ups"

Big Data is an open problem, and it seems the problem will always be there. It is
present in so many fields, and it may have huge financial and people’s life impact. With
this research we expect we can improve the current techniques on how to deal with certain
class of Big Data problems.
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3 Theoretical Foundations

3.1 van Emde Boas trees

In this section we will explain the van Emde Boas tree using a very direct approach,
If you rather like a more smooth and didactic explanation, please refer to Cormen’s book
(CORMEN et al., 2009) (chapter 20).

The van Emde Boas tree (vEBt) is a data structure that performs dynamic set
operations, insert, search, delete, successor, predecessor in O(lg lgU) and min and max in
O(1) worst case time cost.

The van Emde Boas (vEB) tree is a recursive structure that all children nodes
are also vEB trees. Every single vEB(u)1 2 node, except the leaves, have

√
u×vEBt(

√
u)

children, one summary and the minimum and maximum keys, as shown in Figure 2. The
minimum and maximum elements are non-negative integer keys and the summary is also
a vEBt(

√
u) as we will see in more detail in this section.

Figure 2 – van Emde Boas tree

A vEB(28) has 24 × vEB(24) trees. Each vEB(24) has 22 × vEB(22) trees. And so on
until vEB(21) leaves

To understand how the van Emde Boas tree works let’s build it from a very basic
data structure, a direct-address table (CORMEN et al., 2009) (chapter 11.1).

1 For vEB(u) or vEBt(u) we denote a van Emde Boas tree of universe size u
2 u, the universe size of node is the maximum number of keys that can be stored by the node and its

children. In vEB trees, keys range from 0 to u-1
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A direct-address table is a ordered bit vector indexed from ‘0’ to ‘U - 1’, in which
indexes represent keys of the universe ‘U’. If the key is present in the set it has value ‘1’,
otherwise it has value ‘0’. As you can see from Table 2, the direct-address table has O(1)
time only for dictionary operations and O(U) for the remaining dynamic set operations.

Table 2 – Direct-address vs vEB time cost.

operation DA table ordered vector vEB

insert O(1) O(n) O(lg lg U)
remove O(1) O(n) O(lg lg U)
search O(1) O(lg n) O(lg lg U)
successor O(U) O(lg n) O(lg lg U)
predecessor O(U) O(lg n) O(lg lg U)
min O(U) O(1) O(1)
max O(U) O(1) O(1)

Comparison of worst case time cost of dynamic set operations between direct-address
tables, ordered vector and van Emde Boas tree. The ordered vector has O(1) time for
‘successor’ and ‘predecessor’ operations if the index of the element is already known,
and the cost of ‘insert’ and ‘remove’ operations are actually ‘lg n’ to find the index plus
‘vector.size()− index− 1’ to move the memory on the tail.

You might be asking yourself, why not start from a dynamic ordered vector instead
of a direct-address table? The reason is because there is a lower bound Ω(n lg n) for
comparison sorting operations (CORMEN et al., 2009) (Pgs 191-193), and with direct-
address tables we operate on universe instead of elements present on the set, thus we
may have a chance to trade ‘lg n’ by ‘lg lgU ’ time cost. See Radix sort (CORMEN et al.,
2009) (Pg 197) as an example of an algorithm exploiting the universe to cheat around the
Ω(n lg n) sorting limitation.

On the top of Figure 3 there is a direct-address table. The first row of the table
has indexes of the table in decimal basis, the second row has indexes in binary basis, and
the third row has keys stored as hexadecimal values. The second row wouldn’t be need
to represent the direct-address table, the third row could also only have ‘0’s or ‘1’s to
represent if keys are present or not, but this redundancy will help us to visualize how a
vEB tree is built from it. The arrows represents indexes, in binary basis, that have the
same half most significant bits.

The first step to build our vEBt is group together vector keys that have the same
half most significant bits, as shown in the mid section of the Figure 3.

Notice that, by dividing the array in groups of most half significant bits we are
actually diving the array of size ‘u’ in ‘

√
u’ arrays of size ‘

√
u’. That’s because our universe

will always be a power of 2, i.e. u = 2m, and
√

2m = 2m/2. The keys into sub-arrays now
only hold the half significant bit of their original values. To retrieve back any key from
this new structure, we just need to concatenate the index of the sub-array with the new
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Figure 3 – van Emde Boas tree cluster array

An array of size 16 broken into one array of size
√

16, with each element pointing to
arrays of size

√
16. The summary, of size

√
16, indicates what sub-arrays have at least

one element. The last section of the image shows two registers holding the minimum and
maximum keys. Notice the minimum key has been removed from its original sub-array.
‘Ub : 4’ means the universe is ‘U : 24’

value of the key.

The second step is to create a summary that has ‘x’ marks to indicate what sub-
arrays have at least one key present. As an example, the value ’x’ in the summary at index
‘1’, states there is at least one key in the second sub-array, and the absence of ‘x’ in index
‘2’ indicates there isn’t any key in the third sub-array.

The third step is to store theminimum andmaximum keys in separated registers and
remove the minimum element from its original sub-array. After removing, the corresponding
summary mark must be cleared it that sub-array just became empty. See the last section
of Figure 3.

Finally to build the complete vEB tree as depicted in Figure 5 we just need to
apply these three steps recursively for all sub-arrays and summaries until they reach leaves
of universe size 21, as shown in Figure 4.
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Figure 4 – Breaking an array into a vEB node recursively

The second sub-array has been recursively broken until vEB(21) trees. vEB(21) trees has
only the minimum and maximum registers.

Now that we understand the vEBt structure, let’s get some intuition how O(lg lgU)
is achieved. To do that, we will exercise the vEB tree we’ve just built in Figure 5. Calling
search(6) (Algorithm 1) to retrieve key ‘6’, binary ‘0110’, we have to go down ‘2’ levels
on the tree. That is not a coincidence, ‘2’ is ‘lg lg 16’ and ‘16’ the universe of the tree.

We are ready now to face a the formal approach.

The search Algorithm 1 has a recurrence of the form T (U) ≤ T (
√
U) +O(1). The

first term of the recurrence comes from line 7.

To solve this recurrence, let first recall from master theorem method (CORMEN
et al., 2009) (Pgs 94, 95) for solving recurrences of the form T (n) = a × T (n/b) + f(n)
where a ≥ 1 and b > 1 are constants and f(n) is an asymptotically positive function.
Our recurrence matches the second case where f(n) = Θ(logb a), and then T (n) =
Θ(nlogb a × lg n)

Back to the recurrence:
Making m = lgU



3.1. van Emde Boas trees 35

Figure 5 – The complete vEB tree

The initial array has been completely recursively broken into a vEB tree. The square box
with a 4 on the top most vEB structure, actually represents a 24 Universe

T (2m) ≤ T (2dm/2e) +O(1)
Noting that dm/2e ≤ 2m/3 for all m ≥ 2, we have
T (2m) ≤ T (22m/3) +O(1)
Letting S(m) = T (2m), we rewrite the recurrence as
S(m) ≤ S(2m/3) +O(1)
From the master theorem
S(m) = O(mlog3/2 1 × lgm)
S(m) = O(lgm)
remembering m = lgU, T (U) = T (2m) = S(m) = O(lgm) = O(lg lgU)
finally T (U) = O(lg lgU)

It is easy to see the recurrence on search() operation. Other operations like suc-
cessor() and predecessor() are a bit more tricky, the idea is that for each level we can go
down following a child on the cluster array or the summary, but both, so we will go down
at most lg lgU , and as we will see the min and max keys at each level help in this trick.
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Algorithm 1 vEB search (CORMEN et al., 2009)
1: procedure vEb::search(key)
2: if key = min OR key = max then
3: return TRUE
4: else if Ub = 1 then
5: return FALSE
6: else
7: return cluster[high(key)].search(low(key))
8: end if
9: end procedure

The successor Algorithm 2, recursively calls successor() on a cluster sub-tree at
line 13, or successor() on summary at line 16, but both. At line 11 and 20 there are min()
and max(), which are O(1) operations.

The idea of successor Algorithm 2 is check the base case when Universe is 21 at
lines 2 to 7. If that’s the case, it will return max if it is ‘1’ and key ‘0’, otherwise there
isn’t a successor at this level and returns ‘NIL’. If Universe is greater than 21, and the key
is less than a valid min, it just returns min because it will actually be the successor of
key (line 8). Otherwise, it checks if the successor lies into the same cluster as key (line 11
to 13). If not, it returns the minimal of successor cluster by searching it in the summary
(lines 16 to 22).

The predecessor Algorithm 3 has exactly the same idea as the successor Algorithm 2.
It may call predecessor() in the cluster sub-tree at line 13, or in the summary at line 16,
but both. The algorithm is symmetric to successor(), except by a minor detail, min values
are not present in sub-trees while max are.

At the insert Algorithm 4, lines 5-6 are the base case, an empty tree, lines 8-9
set key to min and insert the previous min that is not the minimum value anymore into
the tree. Lines 12-14, insert high(key) into the summary only if it was empty, making
a recursive call at line 13. If that’s is not the case, i.e. there was something already in
cluster[high(key)], low(key) is inserted into the cluster making it recurse at line 16. Finally,
at line 20, key replaces max if it is greater. As you can see, it can recurse either at line 13
or 16 but both.

At delete Algorithm 5, lines 2-5 delete min and max if they are equals to key. Lines
6-12 handles vEB with universe of 2, if line 7 is reached, means that min is different from
max and key is either 0 or 1, then one of them will be deleted and max will be equal to
min with just one key into that node. At lines 14-18, if key is equal min, min is replaced
with the next minimal value and and that value will be deleted from the corresponding
child tree. Remember that the min is never present into children trees. Line 18 deletes
the key from the sub-tree it belongs to. If it just became empty, lines 21-29, the summary
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Algorithm 2 vEB successor (CORMEN et al., 2009)
1: procedure vEb::successor(key)
2: if Ub = 1 then
3: if key = 0 AND max = 1 then
4: return 1
5: else
6: return NIL
7: end if
8: else if min 6= NIL AND key < min then
9: return min

10: else
11: max_low ← cluster[high(key)].max()
12: if max_low 6= NIL AND low(key) < max_low then
13: offset← cluster[high(key)].successor(low(key))
14: return index(high(key), offset)
15: else
16: succ_cluster ← summary.successor(high(key))
17: if succ_cluster = NIL then
18: return NIL
19: else
20: offset← cluster[succ_cluster].min()
21: returnindex(succ_cluster, offset)
22: end if
23: end if
24: end if
25: end procedure

is updated by removing the corresponding cluster index. If the deleted key was equal to
max, max is set to min if it is the only element left on the tree, max is set to the new
maximum value left in the tree, line 27. Lines 30-31 do the same as lines 22 and 27, but
without needing to delete the cluster index from summary. At first glance, looks like we
can recurse in line 19 and line 21, but line 21 only executes if line 19 has only one element
and takes O(1) time.

The minimum Algorithm 6 and maximum Algorithm 7 Algorithms are very straight,
executes in O(1) time, and don’t need further explanation.

As we have seem, the van Emde Boas cheats around the Ω(n lg n) lower bound
by operating on the Universe, but this come at a price. Its cluster uses a lot of memory.
Even an empty tree, like shown in Table 3, may use a huge amount of memory. The
space requirement of the van Emde Boas tree is characterized by the recurrence P (u) =
(
√
u+ 1)P (

√
u) + Θ(

√
u). Summary and children are represented by the first term and

clusters are the second. Min and max keys requires Θ(lg u) space each and are combined
into the last term.

Let’s solve this recurrence by unrolling it. First notice, the function f(u) =
√
u,
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Algorithm 3 vEB predecessor (CORMEN et al., 2009)
1: procedure vEb::predecessor(key)
2: if Ub = 1 then
3: if key = 1 AND min = 0 then
4: return 0
5: else
6: return NIL
7: end if
8: else if max 6= NIL AND key > max then
9: return max
10: else
11: min_low ← cluster[high(key)].min()
12: if min_low 6= NIL AND low(key) > min_low then
13: offset← cluster[high(key)].predecessor(low(key))
14: return index(high(key), offset)
15: else
16: pred_cluster ← summary.predecessor(high(key))
17: if pred_cluster = NIL then
18: if min 6= NIL AND key > min then
19: return min
20: else
21: return NIL
22: end if
23: else
24: offset← cluster[pred_cluster].max()
25: returnindex(pred_cluster, offset)
26: end if
27: end if
28: end if
29: end procedure

if iterated, needs lg lg u steps to reduce its argument down to 2 or less, i.e. f ∗2 (u) =
lg lg u (CORMEN et al., 2009) (Pg 63). It is easier to see by making u = 22m , it needs
lg 2m = m steps to reduce it to 220 = 2, i.e. it needs lg lg 22m = m = lg lg u steps. If you
look at Table 8 it will become very intuitive. So, unrolling the recursion we get:

P (u) =
(

lg lg u∏
i=1

(u1/2i + 1)
)
P (2) +

lg lg u∑
i=2

[(
i∏

j=2
(u1/2j−1 + 1)

)
Θ(u1/2i)

]
+ Θ(u1/2)

Let’s simplify the term, T =
i∏

j=2
(u1/2j−1 + 1)

Using only the dominant term:

T = O

(
i∏

j=2
u1/2j−1

)
= O

(
i−1∏
j=1

u1/2j

)
= O


i−1∏
j=0

u1/2j

u


Applying sum of n terms of geometric series:
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Algorithm 4 vEB insert (CORMEN et al., 2009)
1: procedure vEb::insert_empty(key)
2: min← max← key
3: end procedure
4: procedure vEb::insert(key)
5: if min = NIL then
6: insert_empty(key)
7: else
8: if key < min then
9: swap(key,min)

10: end if
11: if Ub > 1 then
12: if cluster[high(key)].min() = NIL then
13: summary.insert(high(key))
14: cluster[high(key)].insert_empty(low(key))
15: else
16: cluster[high(key)].insert(low(key))
17: end if
18: end if
19: if key > max then
20: max← key
21: end if
22: end if
23: end procedure

O


u

(
1− 1/2i
1− 1/2

)

u

 = O
(
u1−(1/2i−1)

)
= O

(
u1−(2/2i)

)
= O

(
u

(u1/2i)2

)

The new formula becomes:

P (u) =
(

lg lg u∏
i=1

(u1/2i + 1)
)
P (2) +

lg lg u∑
i=2

[
O

(
u

(u1/2i)2

)
Θ(u1/2i)

]
+ Θ(u1/2)

P (u) =
(

lg lg u∏
i=1

(u1/2i + 1)
)
P (2) +

lg lg u∑
i=2

[
O

(
u

(u1/2i)

)]
+ Θ(u1/2)

The highest term of the product will be ∏lg lg u
i=i 1/2i, which just a few terms of the

sum of the geometric series given by ∏∞i=0 1/2i. The sum of the geometric series converge
to 2 by applying the formula 1/(1− r). Without the term i = 0, we have ∏lg lg u

i=i 1/2i < 1
and thus this production is o(u).

For the summation, the highest term will be for ‘i = lg lg u’. Making u = 22m , we
have (22m)1/2lg lg 22m

= (22m)1/2m

= 2 that gives O(u). Since the largest term is O(u) the
solution for the recursion is P (u) = O(u).

The last column in Table 3 shows the memory used for a full vEB tree for few
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Algorithm 5 vEB remove (CORMEN et al., 2009)
1: procedure vEb::remove(key)
2: if min = max then
3: if min = key then
4: min← max← NIL
5: end if
6: else if Ub = 1 then
7: if key = 0 then
8: min← 1
9: else
10: min← 0
11: end if
12: max← min
13: else
14: if key = min then
15: first_cluster ← summary.min()
16: key ← index(first_cluster, cluster[first_cluster].min())
17: min← key
18: end if
19: cluster[high(key)].delete(low(key))
20: if cluster[high(key)].min() = NIL then
21: summay.remove(high(key))
22: if key = max then
23: sumary_max← summary.max()
24: if sumary_max = NIL then
25: max← min
26: else
27: max← index(summaru_max, cluster[summaru_max].max)
28: end if
29: end if
30: else if key = max then
31: max← index(high(key), cluster[high(key)].max)
32: end if
33: end if
34: end procedure

Algorithm 6 vEB minimum (CORMEN et al., 2009)
1: procedure vEb::minimum(key)
2: return min
3: end procedure

Algorithm 7 vEB maximum (CORMEN et al., 2009)
1: procedure vEb::maximum(key)
2: return max
3: end procedure
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universe sizes.

Table 3 – Memory cost of a vEB tree.

k 2k (bits) U = 22k cluster (bytes) pointers memory (bytes)

0 1 2 0 0 2
1 2 4 16 3 32
2 4 16 32 20 202
3 8 256 128 357 3,572
4 16 65,536 2.048 92,006 920,064
5 32 4.29E+09 524,288 6.03E+09 6.03E+10 (56 GB)
6 64 1.84E+19 3.44E+10 (32 GB) 2.59E+19 2.59E+20 (58 EB)
7 128 3.40E+38 2.95E+20 4.78E+38 4.78E+39
8 256 1.16E+77 1.09E+40 1.63E+77 1.63E+78

From 2k = 1 to 2k = 64, a 64-bits machine is considered. For 2k = 128 and 2k = 258, a
128-bits and 256-bits machine are considered respectively. It is also considering the tree
has no satellite data. The fourth column is the size in bytes of clusters. The fifth column is
total number of pointers in the tree structure. The last column is the total space in bytes
occupied by the whole tree 3.

As we can see, the size of full vEB tree, as well the size of a empty vEB tree are a
big issue. We are addressing these issues in this research.

3.2 Computer Networks Review

In this section we will very briefly recap basic network concepts to help understand
some decisions made in our methodology. Let’s start from the reference models then jump
directly into UDP protocol that was intensively used in this research.

3.2.1 Reference Models

The first computer networks where designed with hardware as main concern and
software as an afterthought (TANENBAUM; WETHERALL, 2012).

With complexity growing, networks were designed as a stack of layers. The purpose
of each layer was to hide the complexity and details of implementation from higher layers.
A layer also offers services to higher layer and the agreement or interface on how to use
that layer is called “protocol".

In 1983, the International Standards Organization (ISO), defined a reference model
to standardize network layers and its protocols. It is know as Open System Interconnection
(OSI). The OSI reference model has the following layers (Figure 6):
3 <https://docs.google.com/spreadsheets/d/1D_zElpjwRuksx_IxwYNo9Iy8IZ2Mt_GPHE51NXg9SCo/

edit?usp=sharing>

https://docs.google.com/spreadsheets/d/1D_zElpjwRuksx_IxwYNo9Iy8IZ2Mt_GPHE51NXg9SCo/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1D_zElpjwRuksx_IxwYNo9Iy8IZ2Mt_GPHE51NXg9SCo/edit?usp=sharing
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1. Physical - Concerns with how to transmit bits over the communication channel. how
many bits has byte, whats the voltage level for bit 1 and bit 0, how long a bit lasts,
...;

2. Data Link - Send frames of data. If it is reliable, the receiver send an Ack back to
the sender. Deals with framing (e.g. byte stuffing). Offer the higher level layer a
regulation mechanism to indicate when it is ready to send more data, this is useful
when the receiver is slower;

3. Network - Provides routing mechanism for a packet sent from source reach the
destination. Also offer some QoS to handle congestion control. Allow heterogeneous
networks to interconnect;

4. Transport - Accept data from above layers and splits it in smaller pieces to be sent
by Network layer. This layers offer two different services to higher layers, one is an
error-free point-to-point channel, that deliver messages in exactly order they are
sent, and another is a connection-less transfer where packets may not be delivery
or may be delivered out of order. From this layer and above the communication is
really end-to-end, while on the layer bellow that the communication happens with
their neighbors;

5. Session - Establish a session between peers. Can be used to keep track of whose turn
to transmit, or access to critical operations for example;

6. Presentation - Concerns with syntax or semantics of information transmitted, e.g.
High level layers will see the same data even if they run on machines with different
endianess;

7. Application - Protocol commonly used by applications, i.e. HTTP, FTP, ...

On late 1960’s, the U.S. Department of Defense (DoD), sponsored a named
ARPANET, that later was named TCP/IP. The protocol was designed to allow a packet
leave source and reach destination even if some machines or transmission lines were sud-
denly put out of operation, to allow heterogeneous network interconnection and to be
very flexible by allowing different transfers, ranging from transferring files to real-time
applications.

The TCP/IP reference model has the following layers (Figures 6 and 7):

1. Link - Describe how links like serial lines or classic Ethernet must do to meet the
requirements of higher level layers;
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Figure 6 – OSI vs TCP/IP reference model

Figure extracted from Computer Networks Tanenbaum’s book (TANENBAUM; WETHER-
ALL, 2012) (pg 46)

2. Internet - Allows routing and heterogeneous network interconnection. Packets can
be delivered in any order, so higher level layers has to order it if want to. It offers
Internet Protocol (IP) and Internet Control Message Protocol (ICMP) protocols;

3. Transport - Like in OSI model, allows end-to-end communication. Offers two services
to higher layers, the first one, Transmission Control Protocol (TCP), is reliable
connection oriented and also handles flow control. The second, User Datagram
Protocol (UDP), is unreliable, connection less and doesn’t provide flow control;

4. Application - Higher level protocols.

3.2.2 UDP

The UDP allows to send encapsulated IP datagrams without establishing a connec-
tion. It transmits segments consisting of 8-bytes header (Figure 8) followed by the payload.
The two ports identifies the source and destinations endpoint, by using these ports the
operating system can delivery the message to the right (binded) application.

The minimum UDP packet is 8-bytes length, because of the UDP header, see Figure
8. The maximum is 65,515 bytes because of the maximum length of a IPv4 packet (IP
length field minus IPv4 header size, i.e. ‘65,535 - 20’).

UDP is not reliable and doesn’t guarantee packets will be delivered in right order.
In addition it doesn’t implements flow control as TCP does. But its simplicity some times
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Figure 7 – TCP/IP layers and typical protocols

Figure extracted from Computer Networks Tanenbaum’s book (TANENBAUM; WETHER-
ALL, 2012) (pg 48)

Figure 8 – UDP header

Figure extracted from Computer Networks Tanenbaum’s book (TANENBAUM; WETHER-
ALL, 2012) (pg 542)

makes it better for some applications4. It has a smaller header and smaller delay due to
TCP initial 3-way handshake.

IPv4 UDP frames and regular IPv6 UDP frames may have up to 65,507 bytes (65,535
- 8 byte UDP header - 20 byte IP header) (EGGERT; FAIRHURST, 2008)(HEFFNER;
CHANDLER, 2007) and jumbo-frames can carry up 9000 bytes of payload. Ideally, it
is not recommended to send UDP packets bigger than MTU (EGGERT; FAIRHURST,
2008)(HEFFNER; CHANDLER, 2007) because the UDP fragmentation causes less relia-
bility.

UDP messages can be sent as Unicast, when it is directed to a specific destination
address, as Broadcast when it is sent to all machines of a sub-net, or Multicast when it
is addressed to group of subscriber machines. In this research we are using Unicast and
Multicast UDP messages.

4 Applications where low latency is a must, e.g. games, and/or reliability is not mandatory, e.g. multimedia
streaming.
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3.2.3 Unicast

Unicast addressing uses a one-to-one association between a sender and destination.
Each destination address uniquely identifies a single receiver endpoint.

To send a Unicast message on a Local Network, the sender needs to know the
MAC address of the destination machine. Each computer in a network keep a table that
maps IPs in MAC addresses. That table is named Address Resolution Protocol (ARP)
table in IPv4 and Network Discovery Protocol (NDP) table in IPv6. When some MAC is
still unknown, the ARP or NDP protocol is used to discover and save it for future use.
Entries on the table are valid for a certain period of time and the number os entries is
parameterized by the Operating System. A entry a machine may expire or be dropped if
table is full, usually the linux ARP table size is 1024 entries.

3.2.4 Multicast

Sometimes we want to send exactly the same message to several machines. Even
if there are few machines, send those same messages individually to any single machine
may have an undesirable cost. To avoid that, we could send a Broadcast message, so that
we just send the message once but all machines receives the message. But Broadcast also
have its drawbacks, few machines may not be interested on such messages, or even worse,
they are interested but aren’t supposed to receive such messages.

To solve that, there is another one-to-many message named Multicast, With
multicast, the sender sends a message to a group and only machines signed with that
group receives the message.

The IPv4 224.0.0.0/24 range is reserved for multicast on local network. If a multicast
group has members on others networks, a routing protocol is need, but that’s not the case
for this research.

3.3 Distributed Systems

To understand the fundamental building blocks of a distributed system, it is
necessary to consider four key questions:

• Communicating entities - What are the entities that are communicating in the
distributed system? It is helpful to address the first question from a system-oriented
and a problem-oriented perspective. From the system perspective, it can be Threads,
Processes, or Nodes (machines). From the programming perspective, there is the
following problem-oriented abstraction: Objects, Components and Web services.
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• Communication paradigms - How do they communicate, or, more specifically, what
communication paradigm is used?

– Interprocess Communication paradigm refers to the relatively low-level support
for communication between processes in distributed systems.

– Remote Invocation represents the most common communication paradigm in
distributed systems, covering a range of techniques based on a two-way exchange
between communicating entities in a distributed system.

∗ Request-reply protocols are effectively a pattern imposed on an underlying
message-passing service to support client-server computing. In particular,
such protocols typically involve a pairwise exchange of messages from
client to server and then from server back to client, with the first message
containing an encoding of the operation to be executed at the server and
also an array of bytes holding associated arguments and the second message
containing any results of the operation, again encoded as an array of bytes.
This paradigm is rather primitive and only really used in embedded systems
where performance is paramount.

∗ In Remote Procedure Call (RPC) procedures in processes on remote com-
puters can be called as if they are procedures in the local address space.
The underlying RPC system then hides important aspects of distribution,
including the encoding and decoding of parameters and results, the passing
of messages and the preserving of the required semantics for the procedure
call.

∗ Remote method invocation (RMI) strongly resembles remote procedure calls
but in a world of distributed objects. With this approach, a calling object
can invoke a method in a remote object. As with RPC, the underlying
details are generally hidden from the user.

– In Indirect Communication - It can be:

∗ Group communication - Is concerned with the delivery of messages to
a set of recipients and hence is a multi-party communication paradigm
supporting one-to-many communication;

∗ Publish-subscribe systems - One-to-many systems wherein a large number
of producers (or publishers) distribute information items of interest (events)
to a similarly large number of consumers (or subscribers);

∗ Message queues - Point-to-point indirection between the producer and
consumer processes;

∗ Tuple spaces - Many-to-many indirect communication whereby processes
can place arbitrary items of structured data, called tuples, in a persistent
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tuple space and other processes can either read or remove such tuples from
the tuple space by specifying patterns of interest;

∗ Distributed shared memory - Provide an abstraction for sharing data be-
tween processes that do not share physical memory.

• Roles and responsibilities - What (potentially changing) roles and responsibilities do
they have in the overall architecture?

• Placement - How are they mapped on to the physical distributed infrastructure
(what is their placement)?

We will see in section 4.3.2.1 that we have implemented our communication
protocol from the ground up, thus the Request-reply protocols is definitely the dominant
communication paradigm we worked with. Let’s see some concepts usually present in
Request-reply systems:

• Message Identifiers - This must be present if we need a reliable message delivery
or request-reply. Usually it is composed of two parts, the first one is a sequential
number unique in the process, and the second is a unique identifier of the sender in
the whole distributed system.

• Failure model - When implemented using UDP, there may have omission failures,
system failure or out of order reception. The action taken when timeout occurs
depends on delivery guarantees being offered (e.g. retry, save message to disk for
later retry)

• Timeouts - When, a timeout occur, the RPC layer could just return an error to the
caller, or retry a few times. The timeout between retries can be fixed or adjustable
based on QoS or congestion/flow control strategies.

• Discarding duplicates - In case of retransmission, the same massage may be received
more than once. The message identifier are used to detect duplicated messages.

• Lost reply - If the reply/answer message wasn’t received by the client, may make
the client to send the message again. If the messages are idempotent, i.e. can be
executed repeatedly with the same effect, than it is not that harmful other than use
more CPU, otherwise, some special treatment must be taken.

• History - Can be used to deal with duplicated messages and lost replies.

• Style of exchange protocol - Three different types of protocols, that produces different
behaviors in the presence of communication failure are:
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– Request (R) - There is reply for the message sent. It is implement with UDP
datagram and therefore suffer from the same communication failures;

– Request-Reply (RR) - In this case, the replay massage can be used as an
acknowledge, and the retransmission may be done if it is not received. A history
can be used to deal lost replies;

– Request-Reply-Acknowledge (RRA) - It is like RR, but the final Ack sent by
the client can be used to remove the entry from the History;
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4 Methodology

In Subsection 2.1.1 we depicted challenges we had to overcome in order to achieve
the main goal 1.2 of this research. In this chapter we will see the designing decisions taken
to solve such challenges.

The first section of this chapter, describes the designing decisions taken to overcome
the first challenge, while the remaining sections are devoted to explain the designing
decisions take to overcome the second and third challenges. Those last two challenges
are tight together and then treated simultaneously. Subsection 4.3.1 shows a preliminary
solution and introduce basic concepts that are the foundations of our final approach. We
decided to present this preliminary solution because it was the first approach implemented
in this research. It is also a simpler approach, that runs on top of IPv6, and probably
make easier to understand the basic principles we want to introduce. Then, at the end
of Subsection 4.3.1 we present several drawbacks of that IPv6 solution and move to
Subsection 4.3.2 to present our final design.

4.1 Challenge 1: Allow a vEB tree to increase its universe

Figure 9 – A vEB tree with universe 28 using a proxy Root

The Root delegating to a vEB of universe of 28.

Suppose we have a original vEB tree (Figure 9) with Universe of 256 (28) and we
want to add a new key that is bigger than 255, for instance, 300, then we just need to:

1. Create a new vEB(28×2) tree (Figure 10);

2. Remove the min element from our original vEB(28) tree;

3. Set the removed element as min element of our new vEB(28×2) tree;
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Figure 10 – The same vEB tree, now with universe 216

The proxy Root now delegates its calls to a vEB28. The previous vEB28×2 is now pointed
by the first cluster’s element of the top vEB.

4. Set the max element of our new vEB(28×2) tree to be the same as the max element
of our original vEB(28) tree;

5. Point the first cluster of our new vEB(28×2) to the original vEB(28) tree;

6. Point the ‘Root’ to our new vEB(28×2) tree.

Algorithm 8 vEbDynamic insert operation
1: procedure vEbDynamic::insert(key, data)
2: while key > universeMax(mK) do
3: min = mV EB.getMin() . saving before delete
4: if min 6= NIL then
5: mV EB.remove(min)
6: end if
7: auxV EB ← new vEbK(ShiftLeft(mK, 1))
8: auxV EB.max←mVEB.max
9: if mV EB.min 6= NIL then
10: auxV EB.summary.insert(0)
11: end if
12: auxV EB.cluster[0]← mV EB
13: mV EB ← auxV EB
14: mK ← ShiftLeft(mK, 1)
15: mV EB.min← min
16: end while
17: mV EB.insert(key, data)
18: end procedure
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Notice that, since a vEB(2k×2) tree holds a pointer to a vEB(2k) tree, this procedure
is very simple. Algorithm 8 depicts this procedure. The described algorithm allows a
vEB(22k) to grow to any vEB(22k+1) with just O(lg lg 22k) time cost, due to the line
remove(), at line 5. The insert(), at line 10 is O(1). The insert() at line 17 is just the
regular insert after the expansion of the tree is done to accommodate the key about to be
inserted and is not really part of the expansion itself. The described algorithm is actually
a method of a vEbDynamic proxy class. Notice that mVEB is “real subject" attribute of
vEbDynamic and points the root of the tree.

It is worth to mention that during our analysis we considered an alternative solution
to increase the universe from 2k to 2k+1, but it would have a high undesired cost, because,
opposed to the vEB(2k×2) approach, a vEB(2k+1) does not contain a vEB(2k), and then it
would be needed to update children vEB clusters and summary to new sizes.

Just to clarify, as an example, suppose we have a vEBt(232), this tree has a vEBt(216)
summary and a cluster with 216 × vEB(216) trees. To expand it to vEBt(233) we have to
increase the cluster size from 216 to 217. Then change the summary from vEBt(216) into
vEBt(217). This has to be done recursively until the last summary. The resulting vEBt(233)
has a vEBt(217) summary and a cluster with 217 × vEB(216) trees. This has a recursion
given by T (u) = T (

√
u) +

√
u.1

To solve this recurrence let’s use the master theorem.

T (u) = T (
√
u) +

√
u

making m = lg u→ u = 2m

T (2m) = T (
√

2m) +
√

2m

making S(m) = T (2m)

T (m) = T (m/2) +
√

2m

Using the Master theorem T (m) = aT (m/b) + f(m)

a = 1, b = 2, f(m) = 2m/2

The condition to apply master theorem is fine, a ≥ 1 and b > 1

Checking conditions for case 3 of master theorem.

f(m) = Ω(mlogb (a+ε)), for some constant ε > 0

2m/2 = Ω(m2), check succeeded.

af(m/b) ≤ c× f(m), for some constant c < 1

2m/4 ≤ 1/2× 2m/2, check succeeded.

1 If the cluster is implemented by a dynamic table, the cost will be amortized T (u) = T (
√

u) + O(1),
which is O(lg lg u).
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Then, by case 3 of master theorem T (m) = Θ(f(m))

S(m) = Θ(2m/2)

T (u) = Θ(2(lg u)/2) = Θ(
√
u)

To expanding vEBt(233) into vEBt(234) we have to change each 217 × vEB(216)
trees in the cluster into vEB(217) trees. Indeed it would be even worse. We have to rebuild
the whole tree because less significant bit of the “high” part will now be the highest
significant bit of the “low" part. This cost will be O(n lg lg u), where n is the number of
elements present in the tree.

Those cost are not acceptable, and as we will show in the next subsections we
solved the problem of the vEB cluster consuming too much memory, so, jumping from
vEB(22k) to vEB(22k+1) won’t be a issue anymore.

Finally, to reach this behavior in our C++ implementation we have made use of
the Proxy Design Partner. As we can see in Figure 11, the Root object implements the
vEB interface and delegates its calls to a vEBLocal object.

Figure 11 – Proxy Pattern applied to our vEB tree

The Root is an object of vEbProxy class and delegates all its calls to a vEbLocal object.
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4.2 Challenge 2: How to make a vEB cluster with minimal memory
cost
This problem could be translated into: How to replace the original cluster, im-

plemented by a vector, so that fits in any machine and still holds its original properties,
i.e. time cost of O(1) for insert(), delete() and search() operations? The O(1) time cost
operations are required to sticky with the time cost of O(lg lgU) for vEB operations.

The first solution that came into mind was to replace the vector by a hash with
a dynamic table, as proposed in (CORMEN et al., 2009) (pg 557). A dynamic table is
an array that increases in size whenever the table becomes full. A common heuristic to
expand the table is to increase it by twice the size. To analyze the cost of inserting in a
dynamic table, let’s suppose a table of size “i", when there is room for data, the insertion
cost is O(1), when the table gets full, a new array of size “2× i" is allocated and “i" values
from previous array are copied into the new one. Notice that, each time “i− 1" is an exact
power of 2, the insertion cost is O(i), otherwise it is O(1).

The cost of a single insertion is:

ci =

i, if i− 1 and exaxr power of 2

1, otherwiser

Since the asymptotic cost varies depending on “i", it makes more sense to calculate
the amortized cost of inserting “n" elements:

T (n) =
n∑
i=1

ci

T (n) ≤ n+
blgnc∑
j=0

2j

The first “n" is because at most n operations cost 1. The summation are the “lg n"
times “i − 1" becomes the an exact power of 2. Solving the summation as a sum of a
geometric series, leads to:

T (n) < n+ 2n

T (n) = O(n)

Thus, a hash with a dynamic table, also has suitable cost of O(1) for insert(),
delete() and search() (CORMEN et al., 2009) (pg 465). But a hash table has space
requirement of O(n lg n) (CORMEN et al., ) and at some point after insert a huge amount
of elements, no single machine will be able to store it.

We not only need to distribute the tree nodes to make our vEB scalable, we also
need to somehow distribute the cluster to make it viable.

On the next sub-section we will address the tree distribution and cluster distribution
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altogether because its too tight to be treated separately.

4.3 Challenge 3: Distribute the vEB tree
In order to distribute our tree we have considered two solutions. The first solution

is based on calculate the IPv6 address of the remote node based on the position of the
node into the whole tree in O(1) time cost. The second solution is based on not knowing
exactly where the hosting machine is, but instead send a multicast across the network to
figure out what machine is hosting a specific node. Each solution has its caveats and we
will analyze them on the next subsections.

4.3.1 Automatic IPv6 addressing

With this approach we can calculate the exactly IPv6 address (HINDEN; DEERING,
2003) of a remote vEB node, if it is a real node or a summary, and call a RPC to the
machine hosting that node.

It is worth to notice that we don’t want to assign, to host machines, all range of
IPv6 address statically at the very beginning. It would be almost as hazard as allocate the
whole cluster for a initially empty tree. We want our tree to be scalable, we don’t want to
have all the machines and resources statically allocated at the very beginning. It means
that the IP addresses will be assigned or allocated dynamically.

Before we explain how IPv6 address are dynamically assigned or allocated to host
machines, let’s first explain how the position of the node in the whole tree uniquely
determines the IP address of the host machine, i.e. let’s explain how we are doing the
IPv6 addressing mapping.

We are mapping nodes to IPv6 Unique Local Address (ULA) (HINDEN; HABER-
MAN, 2005). As you can see from Figure 12, we are replacing the most ten significant
bits of the randomly generated part of the prefix with something we called “Y", and
the remaining bits of the randomly generated part will be replaced by zeroes. “Y" is a
value used in our mapping that encodes two things, the height (when full) of the node,
represented by the first tree bits and the ancestors summary bit-mask represented by the
seven remaining bits. Please have a look at Table 4 to see how these bits are encoded.
Finally the 80 less significant bits of the IPv6 address are used to encode the index of
a node in its cluster’s parent node. Actually it not only stores the index of its cluster’s
parent node but also hold information of all its ancestors index in theirs cluster’s parent
nodes. Let’s call this ‘CLUSTER_ID’. The GUID of the node, i.e. the value that uniquely
identifies a node, is made of ‘Y’ and ‘CLUSTER_ID’. Now, for a better understanding,
look at the Figure 13 as an example the address mapping. The node labeled “B” has
Y=“101 0100000”, where “101” means that it is a node of universe 232 (height 5 = lg lg 232),
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Figure 12 – Mapping GUID into IPv6 address

and “0100000” means that this node has a summary ancestor at height 5, which in this
case, is the same level as the node itself, meaning that the node is a summary. Now let’s
look at node “E”, where Y=“101 0000000”, “101” to indicates height of 5, “0000000”
indicates that none of its ancestors are a summary, and the CLUSTER_ID=“0:1:0:0”
indicates it is the node at index 1 in its cluster’s parent node. Now, node “F”, Y=“100
0100000”, “100” means a node height 4 and “0100000” means that its ancestor at height 5
is a summary. Finally, suppose the node “E” has a child pointed by its cluster at index
110 6eH, that node would have the its IPv6 address formed by y=“100 0000000”, and
CLUSTER_ID=“0:1:6e:0”.

With this mapping we could have a tree up universe 2128, i.e. height 7, but limited
to only the first 65536 vEB(264) sub-trees that would be addressed by the 16 bits of the
Sub-net field of the IPv6 address. See Figure 12. We could also take the 30 last bits of the
prefix to encode the cluster index into a vEB(2128), allowing to have up to 246 vEB(264)
sub-trees.

Now, that we already know how the position of the node in the whole tree maps to
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Figure 13 – vEB node mapping into IPv6 addresses.

Table 4 – Y value mapped into IPv6 address

U / Y height summary mask U / Y height summary mask

28 011 b 0001000 b 2128 111 b -
24 010 b 0000100 b 264 110 b 1000000 b
22 001 b 0000010 b 232 101 b 0100000 b
21 000 b 0000001 b 216 100 b 0010000 b

The first/fourth column represents the universe of the tree. The second/fifth column, is the
3-bits encoded height of the node. The third/last column represents the encoded ancestors
summary 7-bits mask. And b stands for binary basis.

a unique local IPv6 address, let’s see how we dynamically assigns host machines.

The Figure 14 depicts the sequence diagram to the dynamically addressing allocation
protocol, please refer to it while we explain the process on the next paragraph.

When a vEB tree, let’s say, hosted by a machine “A : Client”, needs to insert a
new element it calls the insert() RPC in the calculated IPv6 address for that node. Once
it doesn’t receive a message from that IPv6 address, it knows there is still no machine
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Figure 14 – Sequence Diagram of the Automatic IPv6 solution

Notice there is no addressing discovering steps, all addresses a directed and fixed mapped
from the vEB node ID. Also notice we only have TCP/IP based RPCs.

hosting that address and then starts the process of assigning a new machine to host it
by sending a Multicast REQUEST_AVAILABLE message. When a machine sends its
first message across the network, it appends a 32 bits randomly generated number to that
message, every next message sent by that machine has that number incremented, it makes
it possible to identify to what message a reply has been received. This is similar to what
happens internally in TCP. Then several machines could respond with a AVAILABLE



58 Chapter 4. Methodology

message. Messages received into a time slice are randomly chosen by the “A : Client”
to actually host the new node. Some algorithms like assign higher weight to nodes that
responded faster could be applied here. By using an approach like that, with a proper time
window size, helps in find a machine that probably would best serve the “A : Client” and
also avoid some possible starvation that could happen if we had taken just the machine
the replied first and them it keeps failing in the next step. Once a machine is chosen, “A :
Client” establishes a TCP connection with that machine and sends an ALLOC message,
then receives an ACK message while the host machines allocates memory, assigns the
new calculated IPv6 address to its own network interface, and then send a ALLOCATED
message back to “A : Client”, that sends a ACK message to the host machine that finally
closes the socket. If the host machine, for some reason doesn’t receive that last ACK from
“A : Client” it will just undo all changes. If for some reason, that TCP socket negotiation
fails, let’s suppose the host send back to “A : Client” a ALLOC_FAILED message, or the
connection is lost, “A : Client” chooses another host from the previous list of available
hosts until that list becomes empty. If errors still persists after try all available host it
finally fails. “A : Client” could repeat the whole process, at the very beginning, by sending
again a REQUEST_AVAILABLE multicast message, up to tree times, before send an “No
distributed memory” error to Application Program Interface (API) client.

In (AGUILERA; GOLAB; SHAH, 2008) is presented the design of a distributed
B-Tree. To allocate a new remote node, the authors propose centralized approach in which
the Client has a list of the Servers that could host the new node. They also randomly
chooses the server for a list of servers and have operations to add/remove servers to/from
the list. In contrast, our solution hasn’t a centralized approach, the server chosen is one of
few that first answered the multicast client request, and it will probably be the ones that
can best serve the Client. We are attempted to state our approach is better, but their
research is different from ours, we are more committed to hold the O(lg lgU) theoretical
time cost of operations, while they are committed to propose practical solution that
consider transactions and fault-tolerance. In addition, they are using B-Trees and we are
using van Emde Boas trees. So, it is just worth to mention that the approaches are different
and we won’t make naive comparison here. A detailed study of a practical implementation
is out of scope of this research.

Our solution has some good characteristics, it allows the network to be scalable
and dynamic, and also hold the theoretical time cost of O(lg lgU) for all vEB operations.
That’s because, now items of the cluster are at remote node and its addresses are calculated
at O(1). That’s said, let’ see the cons of this approach:

• It would be hard to scale the tree past the vEB(2128) universe. IPv6 has only 128
address bits;
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• Only local network machines could be used because we are mapping nodes to IPv6
ULA;

• Only the first 65536 vEB(264) trees of a vEB(2128) tree would be available. Which
would be represented by the fourth 16-bits group of the IPv6 address, see Figure 12;

• Eventually a Client machine Neighbor Discovery Protocol (NDP) table (NARTEN
E. NORDMARK; SOLIMAN, 2007), that maps IPv6 addresses to its corresponding
MAC addresses, may become full. The default max size of Linux NDP table is 1024
(KERNEL.ORG, ). At this point, if the number of remote nodes are greater than
1024, there is a chance that an addressed node not being present on the NDP table,
and then the NDP process has to be started to discover the MAC address of the
host machine, increasing the constant time to reach that node.

• Another issue to considers is that, in practice, a machine could be hosting something
like 2000 nodes, e.g. hosting 2000 vEB(216) nodes. Looking at the Table 3 we can see
that a fulfilled vEB(216) node has approximately 1.6 MB of RAM, so 2000 vEB(216)
nodes will have approximately 3.1 GB of memory. It seems reasonable to think of a
machine hosting 4000 (6.2GB) or even more. While it is theoretically fine for the
same network interface to have 2000 or 4000 IPv6 addresses assigned to it, we haven’t
really tested it to check if the Operating System (OS) won’t complain about it.

• For the process to assign the IP address of network interface, it must have ad-
ministrative execution rights or some sort of ’Set owner User ID up on execution’
(SUID);

• And lastly, the client can just figure out that a Node doesn’t exist by not receiving
an answer from that node, instead of receive a message from someone saying that
node doesn’t exist. It implies in a huge constant time cost, because we have to have
a timeout huge enough to assume the node doesn’t really exists.

So, let’s start thinking of something else because we can’t deal with the fact that
our IPv6 mapping solution isn’t scalable past 264 universe, o more precisely past a few
thousand of 2128 trees and with so many drawbacks.

4.3.2 Network-Agnostic

Like in the previous approach, ’Automatic IPv6 addressing’, we are still mapping a
unique GUID to a remote node based on its position in the whole tree. But, now, we don’t
map GUIDs into IPv6 addresses and assign IPv6 addresses to host machines, actually we
don’t assign any addresses at all.



60 Chapter 4. Methodology

If we don’t map GUIDs into network addresses, how can we reach the remote node?
We implemented a Network-Agnostic solution that finds the hosting node by sending a
multicast message. The details of this solution are explored during this section.

We do still hold ‘Y’ and CLUSTER_ID, with their same semantics from the
previous sub-section. But we are not actually mapping GUIDs to any network addresses,
and thus we are not limited by the 128 bits of the IPv6 addressing. ‘Y’ can be of any size
and able to encode up to virtually any level of vEB tree. For our implementation we have
chosen a 32 bits ‘Y’ as depicted in Table 5, which allows us to have up to vEB(2131,072)
trees. By the way, if such tree is full, we can respond to a query in up to only 17 steps,
while a regular log n algorithm could take up to 131,072 steps to process the same request.

Table 5 – Y value of Network-Agnostic node mapping

Universe height encoded height summary mask

2217 = 2131,072 17 10010 b -
2216 = 265,536 16 10001 b 010000000000000000 b
2215 = 232,768 15 10000 b 001000000000000000 b
2214 = 216,384 14 01111 b 000100000000000000 b
2213 = 28,192 13 01110 b 000010000000000000 b
2212 = 24,096 12 01101 b 000001000000000000 b
2211 = 22,048 11 01100 b 000000100000000000 b
2210 = 21,024 10 01011 b 000000010000000000 b
229 = 2512 9 01010 b 000000001000000000 b
228 = 2256 8 01001 b 000000000100000000 b
227 = 2128 7 01000 b 000000000010000000 b
226 = 264 6 00111 b 000000000001000000 b
225 = 232 5 00110 b 000000000000100000 b
224 = 216 4 00101 b 000000000000010000 b
223 = 28 3 00100 b 000000000000001000 b
222 = 24 2 00011 b 000000000000000100 b
221 = 22 1 00010 b 000000000000000010 b
220 = 21 0 00001 b 000000000000000001 b

Y has 32 bits. The five first bits are used to represent the height of the tree, so it could
support up 31 heights (height 0 to 30), but the last 27 bits representing the ancestors
summary mask bounds this representation to support a summary at height 26, then this
representation supports universe size up to 2227 = 2134.217.728. Notice there is no need to
encode a summary at height 27 because it is already the top of the tree. Zero ’encoded hight’
is not used. It is reserved to mean invalid or not initialized value. We also intentionally
left summary mask for height 17 unfilled because it is the top height on our experiment
and won’t be used. And b stands for binary basis.

To understand how exactly the GUID is calculated, i.e. Y and Cluster_ID, please
have a look at code of “id.cc” transcribed in Appendix D

We could choose Y to have more bits, but as we will discuss in the next Subsection
4.3.2.1.4, limiting it to 2131,072 trees will make our protocol implementation easier. In
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addition 2131,072 is approximately 1039456 which is roughly 10394 times a Googol (10100),
it is already a number huge enough to satisfy the needs of this research. It is important
tough to highlight it is not a theoretical or practical limitation.

Since we are not mapping the node GUID to IPv6 addresses anymore, we can’t use
only Unicast sockets to make the RPCs, we are using Multicast to start communicating
with the peer (Figure 4.3.2). So, when a vEB tree wants to make a RPC to a remote node,
it does by sending a Multicast message embedded with the node GUID. All the hosting
machines, will look into theirs internal local hash table, named Registry (Appendix B), to
see if that node is hosted, and then sends a Unicast Ack message back if it does so. Notice
that the size of each machine’s internal hash table has nothing to do with O(lg lgU), that
size exclusively depends upon the machine’s RAM size and how many vEB it is hosting.
For instance, as we discussed in the previous sub-section, a regular machine with 4 GB
RM memory could be hosting like up to 2000 nodes, which means a hash table with
up to 2000 entries only. Hash tables with dynamic tables have amortized O(1) cost for
insert/delete/search operations, which makes it just fine to use.

Every single node have a unique GUID. This GUID only depends on static position
of the node in the whole tree. And it stays the same even if the tree expands.

Now, with our GUID, let’s write a general guideline to develop a distributed vEB
tree:

• Every parent node has enough information to figure out the GUID of its children
and summary, i.e. it knowns its own GUID;

• Every machine has a O(1) time function that maps GUIDs, for all nodes it is hosting,
to the actual vEBt objects instantiating it, e.g. a hash table. The hosted vEBt
objects may also have its summary and children hosted somewhere else too;

• To discover what machine is hosting certain node, a multicast (or broadcast) message
is sent querying it. To hold lg lgU this must be done in O(1) time. If no machine
answers the query, that node is supposed to not yet exist 2.

• If possible, if there is a mechanism that can respond with some sort of Nack to
indicate no machine is hosting certain node, would great to avoid having to wait for
the timeout. But remember it must be scalable and O(1) to be considered a valid
solution on theoretical field;

• To create a node, a multicast (or broadcast) is sent to query for available machines.
To hold lg lgU this must be done in O(1) time;

2 In future research we will evaluate if we can replace this multicast approach by a consistent hash. If
that is true, this statement and following ones may change
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• Once the hosting machine is discovered, messages could be exchanged in unicast or
multicast (or broadcast) way.

• If a node is a local node directly pointed out by the parent it is not required, actually
not desirable, to be present on the hash table;

• To allow a network to have more than one distributed tree running, messages must
also carry a global identifier of the distributed tree.

• The distributed implementation layer must be completely encapsulated (Appendix
B) from the rest of the code, so we can easily exchange implementation and also
make then to co-operate simultaneous;

• Security is not a priority. For the time being we are assuming our tree will be used
in High End Computing (HEC) and therefore security is usually provided by the OS
and firewalls to avoid overhead.

Using this guideline we can pretty much have a distributed vEB on top of any
protocol having multicast or broadcast messages. Unicast message are really not required
but may be desirable to avoid unnecessary processing on nodes that have nothing to deal
with a specific transaction.

The Network-Agnostic approach bring few advantages over IPv6 addressing one:

• This approach is not coupled with the Network layer as the previous one. The only
thing we need from Network layer is Multicast (or even Broadcast) capability. In
addition, we don’t have to concern about machines IP addresses, leaving the network
administrator assign it at will;

• We can RPC machines that are out of the LAN;

• We can have vEB trees up to virtually any size. Since we have chosen a 32 bits ’Y’,
we can have up to a vEB(2131,072) tree. We could also prefix the protocol with meta
information and allow ’Y’ have flexible size;

• We could not have a explosive number of IP addresses blowing up NDP tables, by
sending all messages as multicast. But we have decided to make use of Unicast to let
other peer’s network cards and CPU no bothered with unwanted messages. We do
believe it can be a benefit in the future when working with several trees concurrently,
or when we develop a concurrent version (KUŁAKOWSKI, 2013)(WANG; LIN,
2007), and it may also affect the power consumption of the whole network. This is
hard to predict without experiments, and such experiment is out of the scope of this
research due to time constraints;
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• There is no need of administrative execution rights.

The Network-Agnostic approach unfortunately couldn’t solve the following the
IPv6 addressing issues:

• We still have to wait for a safe timeout to figure out that a node doesn’t exist.
Theoretically it doesn’t affect the vEB O(lg lgU) time cost, but it hits hard the
constant time of the RPC and hurts the performance.

With this design in mind let’s implement our own distributed protocol to prove it
works and if well implemented preserves O(lg lgU) time cost.

4.3.2.1 Minimalist UDP implementation

The choice for UDP was not at random. We already needed it for multicast
messages, and it does not have the TCP three-way initial handshake delay. And in future
implementation concurrent version of our tree it may be better not to keep TCP connections
opened while handling requests, it could consume all ephemeral ports and need too many
threads.

We also considered others UDP based protocol like CoAP and UDT, but we got
raw UDP because initially we thought it would be a very simple implementation and
because we wanted to have our own hand-crafted solution that could be fully customized
and compared against others protocols. In addition, to make it possible to collect statistics
in the way we did, some modifications to those libraries would be required. Understanding
the internals of those libraries and modifying it would be very time consuming task.

We developed our protocol from the ground up, adding distributed system concepts
one by one until we get a stable working version on a local network. That is why it has
been called minimalist UDP implementation.

The next subsections describe how we implemented the basic distributed system
concepts that were required.

4.3.2.1.1 Fundamental building blocks

• Communicating entities - From the system perspective, we have Threads entities
calling a remote methods on tree nodes, handled also by other Threads. And tree
nodes Objects if we consider a more problem oriented abstract approach. Also a
cheater Object if the existence of a node need to be known.

• Communication paradigms - We are using:
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– Interprocess Communication - Raw UDP sockets to communicate between
entities;

– Remote Invocation

∗ Request-reply protocols - Request-reply protocol with ACK intermediate
messages.

∗ RPC - We have encapsulated remote call in class the have exactly the
same signature of local class. A client code using services of such class is
completely unaware about the remote call.

∗ RMI - We have created a unique global identifier for every single node on
the tree, and we actually invoke methods on objects representing those
nodes.

– Indirect Communication - we are using Group communication by sending
multicast messages to find out what machine will host a new tree node.

• Roles and responsibilities - For us, a tree node behaves as Server when it receives a
method call, and also a Client when it forwards the call to another remote tree node
to complete the operation. The cheater is also playing Server role.

• Placement - In our architecture, entities are placed in local network. We are using a
placement where we map services into multiple servers. More precisely tree nodes
playing as Server are randomly distributed across multiple machines. And we have
an strategy to discover where tree nodes is so that we can requests its services.

4.3.2.1.2 Message Identifier

The first thing we created was a Message Identifier (Section 3.3), where it was
named Transaction ID.

We need it to reply back to the right message caller. The same machine can
concurrently handling several RPCs, dealing with different levels of the tree, dealing with
concurrent access on the same tree (still no implemented) or even dealing with different
distributed trees. So, even if replies are unicast we still need a Message Identifier. Threads
handling a specific RPC just ignores other’s replies.

A Transaction ID has the following fields in order to make it unique across the
whole system:

• pid - Process ID;

• seqn - A number granted to be unique and sequential in the process;
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• MAC - Network card identifier.

The pid field allows to have other trees running concurrently on the same machine. The
seqn is protected by a mutex and allows to have several trees running in threads in the
same process. And finally the MAC uniquely identify a machine in the network.

4.3.2.1.3 Marshalling

Initially we used Google Protobuf, then to have a bit more performance we did our
own binary serialization. In most of cases we did not even bother with endianess because
all machines in the experiment are Little Endian. We just did some endianess conversion
for few fields we wanted to debug easily with tcpdump (Figure 75). While Google Protobuf
is very powerful, and allows versioning and have ids for each field, we just implemented a
very simple solution without ids and versioning, at most, for some big fields we just have
a boolean to say if it is present or not. Using our hand-craft was also a bit easier to debug
with tcpdump.

With Message Identifiers and Serialization we are now ready to exchange messages.

4.3.2.1.4 Framing

For this research we intentionally limited the GUID to work with up to vEB(2131072)
trees i.e. numbers with up to 217 (131072) bits. And each of single of such number uses 16
KB of RAM memory. And our UDP packets will have up to 33792 bytes (16384 of id +
16384 of key + 1024 of meta-data). Even tough it is a huge UDP packet (Section 3.2.2) at
least we send it over a single fragmented UDP packet and do not have to implement by
ourselves some sort of byte stuffing for data link framing (TANENBAUM; WETHERALL,
2012) (pg 197).

It is also important to mention that IPv6 UDP packets could have UDP packets
up to 4 GB size (BORMAN; HINDEN, 1999), unfortunately, again, we hadn’t time to
take such challenge, and it is out of scope for this research.

4.3.2.1.5 Request-Acknowledge-Reply-Acknowledge

In a general manner, all messages sent, waits shortly for an Ack reply, and then
waits longer for the Result reply. If the Ack reply does not arrive in time it retries sending
exactly the same message (same Transaction ID) a parametrized amount of times, if no
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Ack is still received, it is assumed that node doesn’t exist and then, in most cases, the
create_node() procedure will be started. Using an Ack give us responsiveness because the
Result reply may take long, specially if it needs to make others chained RPCs too. Once
the Ack is received we know we can seat longer and wait for the Result reply. The base
Ack timeout and number of retries are parametrized, the actual timeout and long timeout
used are calculated using our congestion/flow control module (Appendix D).

To calculate the long timeout we need some knowledge about the algorithm, or
even better, the RPC vEB class that encapsulates the vEB remote implementation (classes
VebRemote and TreeRpcMulticast in Appendix B) should pass, to the long_timeout()
method in flowcontrol.cc (Appendix D), an additional sort of “jump_multi" parameter
instead of having it globally set in the program options (Appendix A). Let’s consider, as
an example, vEB insert() Algorithm 4. If line 12 evaluates to true, we have 1 RPC at line
13 and 4 RPCs at line 14, if it was evaluated to false, we have only 1 RPC at line 16. So, to
calculate the long timeout, we have to multiply the worst case, 5 RPCs with the number
of retries and the maximum possible timeout value our flow control can return. In our
implementation of vEB algorithm, we made a few tricks to avoid unnecessary RPCs, have
a look in our implementation of insert algorithm to see that (lines 42 to 44 of veb.cc in
Appendix D). By using that “there_was_something", make it possible to avoid an extra
initial query to see if that cluster is empty. For other tricks like that please check our git
repository.

It should be possible to calculate a “long_timeout" long enough to not indicate
false timeouts but still as shortest as possible to indicate the application about an timeout
error as soon as possible. Right now, since our experiments doesn’t really demands a smart
“long_timeout", we just implemented a very long timeout to avoid false errors. Make the
implementation of what we just proposed will be left for future work.

In addition to Ack, we also have AckF (named Ack2 in few protocols out there).
The Ack is send back from the host to the client in response to a method call. The AckF
is send from the client to the host as a response to the Reply value sent by the host after
processing the method Requested. In similar way, the host may retry sending the Reply
value back to the client until it receives an AckF.

The Figure 15 depicts how RPCs are done using this approach. Actually it is quite
similar to Figure 14. The differences is that some remote methods, like ’insert()’ are now
implemented by Multicast, and the function ’alloc_resource()’, now, instead of assign a
IPv6 address to its network interface, adds the ID into the local hash table. Also notice
we have intentionally replaced IPv6 by IPv4 just to emphasize we are not so coupled with
the Network Layer anymore. In fact, we have plans, to tests with Infinity Band too, and
the designed architecture will allow such adaptation to be very simple.
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Figure 15 – Sequence diagram of inserting a node in Network-Agnostic solution.

We still don’t have a address discovering step because now we multicast the message.
Actually, we could consider the Ack reply some sort of it. We replaced previous TCP
messages from UDP unicast and multicast messages.

4.3.2.1.6 Retry

The initial version of our implementation didn’t have retries(COULOURIS et al.,
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2011), we were so naive to think we wouldn’t loose packets in our local network at a
controlled environment. Dealing with very intensive UDP traffic, and huge fragmented
UDP packets (Subsection 4.3.2.1.4) will definitely result in packet loss. After some failures
on experiments we figured out it needed retries and implemented it. The number of retries
is now a program option parameter (Appendix A).

4.3.2.1.7 Discarding duplicate and History

With retries, the next thing we need is discard duplicated messages. In our imple-
mentation, that may happen in two ways.

The first, the client send a request, the host receives it, sends an Ack back and
starts processing it. Then the client doesn’t receive the Ack and just sends the same
request again (same Message Identifier). While the host is processing the request, and for
that we mean until it receives back the very last AckF, it will be present on a History.
When a request is received it is checked if it is present on the History, and if so, an Ack
is just replied back. Once the Ack is received, the client stops retrying the Request and
starts a long wait for the final Reply. Once he Reply is received, it sends back the final
AckF and finishes the task and the thread goes back to the pool.

If an Reply is received, i.e. it matches the PID and MAC of the process, and no
task handles such message, it means that a previous thread have already received and sent
an AckF back that was lost. In this case, an AckF is just send back so that host stops send
Reply back. The other reason for no task handling a Reply is if it already timed out and
finished, in this case, since we don’t have the concept of “transactions" there is nothing
to tell the host other than just AckF. This is the same situation when a host receives a
Request the client has already given up since the very beginning.

For our experiments RPCs are always received in correct order and therefore are
idempotent. In addition, if there is a failure, i.e. all retries, timeout and long timeout fails,
we just abort the experiment.

We may need some more sophisticated history when dealing with transactions
and a pipelined version (KUŁAKOWSKI, 2013)(WANG; LIN, 2007) of our tree in future
research.

4.3.2.1.8 Flow control and Congestion control

With retries our network traffic becomes even more intensive. Definitely we need
flow control.
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As you can see in flowcontrol.cc (Appendix D), every retry we multiply the timeout
value by a power of 2. The initial attempt will be timeout× 20, then on the next retry
it will be timeout× 21. The amount of retries required to work is saved globally so that
the next RPC will start from timeout× 2last_step. Each time a RPC fails “last_step"
increments until the maximum number of retries. For every four consecutive succeeded
RPCs, the “last_step" decrements until zero.

Once the timeout is calculated using that algorithm, it is added to a randomly
generated value between 1 and timeout/2, this is our congestion controls mechanism.

Until all these techniques listed in this section we couldn’t have our distributed
tree performing the tests successfully.

4.3.2.1.9 Cheater

The Cheater wasn’t required but helped a lot to finish experiments quickly. It
tracks all nodes created (Figure 16). Then, when some Client sends a message to a node,
if that node does not exist, the Cheater replies with a Nack message carrying a “has”
parameter set to false, indicating that no machine hosts a vEB node identified by the
requested GUID. This makes the performance better because the Client does not have to
wait for a timeout/retry to figure out the node doesn’t exists.

To use the Cheater, the root/nodes has to be configured with the option “has_cheater=true"
in order to send that extra message to the Cheater.

Actually that extra message may not be needed. Just wait for an AckCheater on
“A:Client" and send_retry a sort of “multicast.answer_cheater_alloc()” would be enough.

Unfortunately, the Cheater ends up on the same problem we was initially trying to
get ride of. At some point the the tree becomes really huge, the Cheater won’t be able to
hold the list of existing Ids anymore. Remember that a single GUID on a vEB(217) can
have up to 16KB.

Probably, for the Cheater, we could use a solution like ZHT (LI et al., 2013) with a
limitation of 264/partition_size nodes (Table 6) may be enough for real world. Actually,
for real world problems we could not even need the cheater and implement our whole tree
on top of ZHT.

We could also implement our own consistent hashing (KARGER et al., 1997).
Actually, a consistent hash could also be considered for the implementation to replace our
multicast solution, we won’t consider this approach in this research tough.

Others Distributed Hash Tables (DHT) with zero-hop routing could also be con-
sidered. Memcached also has O(1) routing but has a limited key size and doesn’t allow
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Figure 16 – Sequence diagram of inserting a node with Cheater.

The same sequence of the previous digram without the Cheater to speed up the process
by sending Nack messages

dynamic membership. From the DHTs analyzed in Table 6 seems ZHT would be our best
choice and non O(1) would be immediately discarded.
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Table 6 – Comparison between DHT implementations

Name Impl. Routing time Persistence Dynamic membership

Casandra Java lg n Yes Yes
Memcached C 2 No No
C-MPI C/MPI lg n No No
Dynamo Java 0 to lg n Yes Yes
ZHT C++ 0 to 2 Yes Yes

Comparison between DHT implementations. ZHT seems to be the only option for our
needs. It uses C++, it is O(1) and scalable.

Is it also worth to notice that it is not a complete research to propose a practical
solution to a distributed vEB tree. This research is more committed to keep the theoretical
O(lg lgU) time cost for all vEB operations. Even tough it is a theoretical research, we
brought up several practical concepts to the discussion because we have future plans to
extend this research in practical fields.

This list bellow summarizes some of basic distributed system concepts (COULOURIS
et al., 2011) we had to concern with in this minimalist working implementation:

• Message Identifiers - We are using a sequential number, the process id and mac
address;

• Timeouts - We have a progressive timeout the increments when there is a timeout
and decrements and there is a few succeed acknowledges (flowcontrol.cc in Appendix
D);

• Lost reply - All operations wait a final acknowledge from the reply to be considered
done;

• History - We really don’t have it because all replies waits a final acknowledge.

• Style of exchange protocol - We are using something similar to RRA, but we have
an acknowledge message sent from server to client when the request is received.
Request-Acknowledge-Reply-Acknowledge (RARA). This is used because the actual
reply can that long, and having this acknowledge allows the client to immediately
know if the server has received the request.

• Framing - Wasn’t required;

• Marshalling - Proprietary;

• Flow/Congestion Control mechanism.
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5 Experiments

5.1 Planning

We intended to run some experiments to prove that our distributed vEB tree holds
O(lg lgU) time cost, then we naturally need to implement it first.

Our vEB tree was implemented in Modern C++14 1, using Boost library 2 as a
testing and logging framework. Cmake 3 was used as a compiling tool and Qt Creator 4 as
the IDE (Interface Development Environment). And finally lib GMP 5 (GNU Multiple
Precision Arithmetic Library) has been used to handle number greater than 264, i.e. greater
that 64 bits.

Theoretically GMP could handle could handle with up to 237 bits on 64-bits
machines. This is due to its internal representation having a 31-bits integer as counter of
64-bit limbs, which is 237 bits (64 bits× 231 = 26 bits× 231). Notice that such a number
uses 16 GB of memory. In our experiments we are working with 217 bits, i.e. numbers that
uses 16 KB of memory and can represent decimal numbers with almost 40 thousand digits.
It seems to be insane to work with single numbers having more than 16 GB space, but if
we would like to go past that, we would need to replace GMP by something else.

In order to conduct our experiments and make it easy to conduct all future works
mentioned in the Conclusion (Chapter 6), we have designed an architecture that have
several blocks of functionality that can be effortless replaced or configured to model new
experiments. We have compiled a list of requirements for this architecture and designed it
in Appendix B.

Before run the experiments we first needed to check the correctness of our implemen-
tation. We did so by comparing the output of our tree for all vEB operations against the
output of a very basic structure based on C++ STL vector implementation. The correctness
test has succeeded and its source code is depicted in “void test_sanity(std::vector<T> &
tdata)" in test.cc (Appendix D).

If you want to reproduce correctness test and experiments, or get more detailed
information, please check Appendix C.

The following subsections describe the experiments.

1 <https://isocpp.org/>
2 <http://www.boost.org/>
3 <https://cmake.org/>
4 <https://www.qt.io/ide/>
5 <https://gmplib.org/>

https://isocpp.org/
http://www.boost.org/
https://cmake.org/
https://www.qt.io/ide/
https://gmplib.org/
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5.1.1 Experiment 01 - Dense tree

The idea of this experiment is to analyze how a dense tree behaves, more precisely,
analyze its behavior as the number of elements grows. In this experiment, we use a vEB(224)
tree that supports up to 66536 elements, and incrementally insert all these elements until
it becomes 100% dense, i.e. full.

Before we explain how the experiment is performed and statistics are collected, let’s
recall the concept of depth and height because it will be crucial for analyzing the results.
Depth of a node is how far it is from the root. The root has depth zero. Height of node is
the distance from node to the leaf on the longest path. In this chapter, when we mention
depth, we mean the highest depth an operation went down in the tree to be completed.
See Tables 7 and 8 for possible depths on vEB(224) and vEB(2217) trees respectively. Let’s
also recall that level is depth + 1, and we also refer to level, in this chapter, as the deepest
level an operation had to access to be completed.

Table 7 – vEB(224) depths

Universe bits Node depth Height

224 = 216 16 0 4
223 = 28 8 1 3
222 = 24 4 2 2
221 = 22 2 3 1
220 = 21 1 4 0

Table 8 – vEB(2217) depths

Universe bits Node depth Height

2217 = 2131072 131072 0 17
2216 = 265536 65536 1 16
2215 = 232768 32768 2 15
2214 = 216384 16384 3 14
2213 = 28192 8192 4 13
2212 = 24096 4096 5 12
2211 = 22048 2048 6 11
2210 = 21024 1024 7 10
229 = 2512 512 8 9
228 = 2256 256 9 8
227 = 2128 128 10 7
226 = 264 64 11 6
225 = 232 32 12 5
224 = 216 16 13 4
223 = 28 8 14 3
222 = 24 4 15 2
221 = 22 2 16 1
220 = 21 1 17 0

We collect statistics for each operation (insert, successor, predecessor, search,
remove) separately. For each operation, we also collect statistics for each depth individually.
As an example, there will be distinct statistics, for insert at depth 1, insert at depth 2,
successor at depth 1, successor at depth 2 and so on.

The statistics are also separated in groups of 2000 operations and contains, average
time taken, standard deviation, minimal and maximal time taken. Finally these statistics
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are further collect in four sets. The first contains only operations that have not timed-
out/retried. The second is like the first without outliers. The third contains all operations
and the fourth is the same without outliers. Samples that are at least 3 times the standard
deviation away from the mean are considered as outliers.

In this document we will present only statistics from the second group, i.e. opera-
tions that hasn’t timed-out/retry and are not outliers.

Now let’s describe how the experiment is performed and how these statistics are
collected.

At the very beginning an empty vEB tree and a shuffled vector containing numbers
from 0 to 65535 are created..

Then the first 2000 elements of the vector are inserted into tree and the statistics
for insert() operations are collected. After that, successor() calls, for each of these 2000
elements, are performed on the tree and its statistics are collected. The same is done for
predecessor() and search() operations.

Notice the tree now contains 2000 elements.

Then, the next 2000 elements of the vector are inserted and its statistics collected.
After that, once again, successor(), predecessor() and search() are performed and its
statistics collected.

It is then repeated until all the 655356 elements from initial vector are processed
and the tree contains these 65536 elements. Notice the last iteration has only 1536 elements,
and there was 33 interactions at total. Also notice the tree has become more dense after
each interaction, reaching 100% density after the last interaction.

After that, the first 2000 elements of the vector are removed from the tree and the
remove() statistics are collected. This is repeated for the next 2000 elements until all of
then are removed. Now, it is the opposite, the tree is becoming more sparse after each
interaction.

Now let’s dig a bit more on some conditions on which experiments are running. It is
very important to notice the test is running with option “multicast_loopback" set to false,
this together with the Factory rules we implemented in “factory.cc" (Appendix D), will
always make every vEB node to have its summary and cluster elements hosted in a another
machine. It means that for each level it gets down, there will be RPC going underneath. It
is crucial for our analysis because otherwise, we would be dealing with constant times of
completely different magnitudes, one being a method call in CPU/memory and the other
being a serialized RPC call across the network. In other words, we are always forcing RPC
between levels. Of course, for a practical real solution a RPC should only be done when a
machine has no memory to make a local vEB to host itself.
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Another tricky we made to make our analysis easier was to set “force_maxsize"
true (Appendix A). Without that, smaller vEB trees would transfer smaller UPD packets,
much faster and with much less losses. So, we are forcing all RPCs to take the same time
even if it needs to transfer much less data. Without that, a RPC call to a vEBt(2217)
node would carry 33 KB payload (16 KB node ID + 16 KB key + 1 KB metadata)
while a RPC call to vEBt(232) node would take 1032 Bytes payload (4 Bytes node Id +
4 Bytes key+ 1 KB metadata). Sending 33 KB needs IP fragmentation while 1 KB might
fit in MTU. Metadata contains method identifier, transaction indentifier, caller identifier
and statistics. It could be much smaller but we set 1KB in our experiments to just not
have to tweak it.

For these experiments we have 3 different program configurations, and each machine
will be running the right one according to Table 11.

For a complete description of the application parameters please refer to Appendix
A.

Please refer to Appendix C.2 for the configuration files for this experiment.

5.1.2 Experiment 02 - Sparse tree

The idea of this experiment is to analyze how a sparse tree behaves, more precisely,
analyze its behavior as the number of elements grows. We will start with an empty tree
vEB(0) and insert 65536 keys of 131072 bits.

The keys are generated dynamically with lib GMP API using Twister Algorithm
(MATSUMOTO; NISHIMURA, 1998), and we grant it will be unique (source code “test.cc"
in Appendix D). The order of elements will also be randomized. It will be the hash value
order. The hash for those values are calculated using “boost::hash_combine" as you can
see in “natural.hh" source code in Appendix D.

Even after inserting those 65536 elements the tree will continue extremely sparse
with keys spread out across its universe. The universe of this tree is so huge that would
need almost 40 thousand digits to express it with a decimal number.

To understand how this experiment is performed and statistics are collected please
refer to “Experiment 01" (Subsection 5.1.1). Everything from Experiment 01 applies here.
The only difference is the size of generated random keys. In this experiment we use 131072
bits while in “Experiment 01" uses only 16-bits keys.

Please refer to Appendix C.3 for the configuration files for this experiment.
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Table 9 – Number of keys by level of a vEB(65536)

Universe bits Depth Height Keys Keys(found) Cumulative keys(found)

224 = 216 16 0 4 2× 1 = 2 2 2
223 = 28 8 1 3 2× 28 = 512 510 512
222 = 24 4 2 2 2× 28 × 24 = 8192 7680 8192
221 = 22 2 3 1 2× 28 × 24 × 22 = 32768 24576 32768
220 = 21 1 4 0 2× 28 × 24 × 21 = 65536 32768 65536

Considering the vEB is full. Keys are the number of “min" and “max" values at each
level. Keys(found) are the number of keys that will be found by a “search()" operation at
that level. Notice the “min" and “max" keys were found on earlier levels. And Cumulative
keys(found) are the number of keys found until that level by a “search()" operation, i.e.
the sum of Keys(found) till that level.

5.2 Results

5.2.1 Experiment 01 - Dense tree

5.2.1.1 Insert

In this section we consolidate, in five graphs, the statistics collected for insert()
operations on a dense tree and analyze them.

First graph, Figure 17, shows how the insert() average time evolves as the tree
becomes more dense.

Second graph, Figure 18, shows how the average depth taken by insert() operations
evolves as tree becomes more dense.

Third graph, Figure 19, shows how depths taken by insert() operations are dis-
tributed as tree becomes more dense.

Fourth graph, Figure 20, shows how the insert() average time, for each depth,
evolves as the tree becomes more dense.

And fifth graph, Figure 21, shows the overall average time taken by insert()
operations for each depth.
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Figure 17 – insert() mean time by nodes in a dense vEB(224).

The insert() mean time of a population of the last 2000 inserted elements. The tree is less
populated on the left of the chart and more populated on the right.

Figure 18 – insert() average depth by nodes in a dense vEB(224).

The insert() average depth of a population of the last 2000 inserted elements. The tree is
less populated on the left of the chart and more populated on the right.
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Figure 19 – insert() depths count, of last 2k elements, by nodes in a dense vEB(224).

A counting of depths taken by insert() operations of a population of the last 2000 inserted
elements. The tree is less populated on the left of the chart and more populated on the
right.

Figure 20 – insert() depths time by nodes in a dense vEB(224).

The insert() mean time, by depth, of a population of the last 2000 inserted elements. The
tree is less populated on the left of the chart and more populated on the right.
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Figure 21 – insert() depth average time of a dense vEB(224).

The average time taken by insert() operations per depth.

In Figure 17 the average time taken by insert() operations becomes faster as the
tree gets more populated, despite the fact that the average level gets higher (Figures 18
and 19). This happens because time taken for insert() operations at deepest level decreases
(Figure 20). It is not hard to understand why. The insertion on a new node takes 4 RPCs
to create it plus 1 RPC to insert it, while the insertion on a existing node only takes 1
RPC to insert it. For instance, on best case, the insertion at depth 3 takes 4 (1+1+1+1)
RPCS, and on worst case scenario 23 RPCS ((4+1)+(4+1)+(4+1)+(4+4)).

Unfortunately, we can’t still figure out why at deepest level it becomes faster than
the previous level as you can see in Figures 20 and 21.

Actually we have an explanation in mind but we can’t really confirm that. At
initial levels, while tree is still sparse, it has to create a lot of nodes down the path, since
the insertion use keys at random order. When the tree becomes dense, there won’t be any
insertion at initial levels anymore, because even if the key is placed at a lower level, at
“min" slots, it has to push down the key that was previously there. Notice the path down
the pushed key is already created, and our statistics we consider the deepest level accessed
by an operation to be completed. Table 9 shows how many keys will be sitting on each
level of a vEB(224) tree. When the tree is half full, all levels other than the last one will
be almost full.
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5.2.1.2 Successor

In this section we consolidate, in five graphs, the statistics collected for successor()
operations on a dense tree and analyze them.

First graph, Figure 22, shows how the successor() average time evolves as the tree
becomes more dense.

Second graph, Figure 23, shows how the average depth taken by successor() opera-
tions evolves as tree becomes more dense.

Third graph, Figure 24, shows how depths taken by successor() operations are
distributed as tree becomes more dense.

Fourth graph, Figure 25, shows how the successor() average time, for each depth,
evolves as the tree becomes more dense.

And fifth graph, Figure 26, shows the overall average time taken by successor()
operations for each depth.

Figure 22 – successor() mean time by nodes in a dense vEB(224).

The successor() mean time of a population of the last 2000 inserted elements. The tree is
less populated on the left of the chart and more populated on the right.
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Figure 23 – successor() average depth by nodes in a dense vEB(224).

The successor() average depth of a population of the last 2000 inserted elements. The tree
is less populated on the left of the chart and more populated on the right.

Figure 24 – successor() depths count, of last 2k elements, by nodes in a dense vEB(224).

A counting of depths taken by successor() operations of a population of the last 2000
inserted elements. The tree is less populated on the left of the chart and more populated
on the right.
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Figure 25 – successor() depths time by nodes in a dense vEB(224).

The successor() mean time, by depth, of a population of the last 2000 inserted elements.
The tree is less populated on the left of the chart and more populated on the right.

Figure 26 – successor() depth average time of a dense vEB(224).

The average time taken by successor() operations per depth.

As you can see from successor() Algorithm 2, it stops recursion when it hits the min
value, and digs down as the tree becomes populated because chances to hit the minimal
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values on nodes will decrease. It is easy to see the average depth increasing on Figures 23
and 24.

What could bring our attention is the Figure 25, it seems each level is slightly
increasing its time. We bet it is just a fluctuation because we got the same thing on
Experiment 2, but when we repeated Experiment 2 we got a slightly decreasing trend. We
haven’t repeated this experiment tough, what would be desired to confirm that.

5.2.1.3 Predecessor

In this section we consolidate, in five graphs, the statistics collected for predecessor()
operations on a dense tree and analyze them.

First graph, Figure 27, shows how the predecessor() average time evolves as the
tree becomes more dense.

Second graph, Figure 28, shows how the average depth taken by predecessor()
operations evolves as tree becomes more dense.

Third graph, Figure 29, shows how depths taken by predecessor() operations are
distributed as tree becomes more dense.

Fourth graph, Figure 30, shows how the predecessor() average time, for each depth,
evolves as the tree becomes more dense.

And fifth graph, Figure 31, shows the overall average time taken by predecessor()
operations for each depth.
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Figure 27 – predecessor() mean time by nodes in a dense vEB(224).

The predecessor() mean time of a population of the last 2000 inserted elements. The tree
is less populated on the left of the chart and more populated on the right.

Figure 28 – predecessor() average depth by nodes in a dense vEB(224).

The predecessor() average depth of a population of the last 2000 inserted elements. The
tree is less populated on the left of the chart and more populated on the right.
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Figure 29 – predecessor() depths count, of last 2k elements, by nodes in a dense vEB(224).

A counting of depths taken by predecessor() operations of a population of the last 2000
inserted elements. The tree is less populated on the left of the chart and more populated
on the right.

Figure 30 – predecessor() depths time by nodes in a dense vEB(224).

The predecessor() mean time, by depth, of a population of the last 2000 inserted elements.
The tree is less populated on the left of the chart and more populated on the right.
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Figure 31 – predecessor() depth average time of a dense vEB(224).

The average time taken by predecessor() operations per depth.

Like in successor(), it digs down as the tree becomes populated because chances to
hit the minimal values on nodes will decrease. It is easy to see the average depth increasing
on Figures 28 and 29.

The Figure 30 also seems to have a small fluctuation. Just like for successor() it
would be advisable repeat the experiment to confirm that.

5.2.1.4 Search

In this section we consolidate, in five graphs, the statistics collected for search()
operations on a dense tree and analyze them.

First graph, Figure 32, shows how the search() average time evolves as the tree
becomes more dense.

Second graph, Figure 33, shows how the average depth taken by search() operations
evolves as tree becomes more dense.

Third graph, Figure 34, shows how depths taken by search() operations are dis-
tributed as tree becomes more dense.

Fourth graph, Figure 35, shows how the search() average time, for each depth,
evolves as the tree becomes more dense.

And fifth graph, Figure 36, shows the overall average time taken by search()
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operations for each depth.

Figure 32 – search() mean time by nodes in a dense vEB(224).

The search() mean time of a population of the last 2000 inserted elements. The tree is less
populated on the left of the chart and more populated on the right.

Figure 33 – search() average depth by nodes in a dense vEB(224).

The search() average depth of a population of the last 2000 inserted elements. The tree is
less populated on the left of the chart and more populated on the right.



5.2. Results 89

Figure 34 – search() depths count, of last 2k elements, by nodes in a dense vEB(224).

A counting of depths taken by search() operations of a population of the last 2000 inserted
elements. The tree is less populated on the left of the chart and more populated on the
right.

Figure 35 – search() depths time by nodes in a dense vEB(224).

The search() mean time, by depth, of a population of the last 2000 inserted elements. The
tree is less populated on the left of the chart and more populated on the right.
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Figure 36 – search() depth average time of a dense vEB(224).

The average time taken by search() operations per depth.

The average depth of search() operations increase (Figures 33 and 34) because the
algorithm only look into the cluster and it naturally gets deeper as the tree becomes filled.
It is a dense tree and it will end up being a tree like the one in Table 9 where half keys
will be found at the bottom of the tree.

5.2.1.5 Remove

In this section we consolidate, in five graphs, the statistics collected for remove()
operations on a dense tree and analyze them.

First graph, Figure 37, shows how the remove() average time evolves as the tree
becomes more dense.

Second graph, Figure 38, shows how the average depth taken by remove() operations
evolves as tree becomes more dense.

Third graph, Figure 39, shows how depths taken by remove() operations are
distributed as tree becomes more dense.

Fourth graph, Figure 40, shows how the remove() average time, for each depth,
evolves as the tree becomes more dense.

And fifth graph, Figure 41, shows the overall average time taken by remove()
operations for each depth.
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Figure 37 – remove() mean time by nodes in a dense vEB(224).

The remove() mean time of a population of 2000 elements. The tree is less populated on
the right of the chart and more populated on the left.

Figure 38 – remove() average depth by nodes in a dense vEB(224).

The remove() average depth of a population of 2000 elements. The tree is less populated
on the right of the chart and more populated on the left.
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Figure 39 – remove() depths count, of last 2k elements, by nodes in a dense vEB(224).

A counting of depths taken by remove() operations of a population of 2000 elements. The
tree is right populated on the left of the chart and more populated on the left.

Figure 40 – remove() depths time by nodes in a dense vEB(224).

The remove() mean time, by depth, of a population of 2000 elements. The tree is less
populated on the right of the chart and more populated on the left.
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Figure 41 – remove() depth average time of a dense vEB(224).

The average time taken by remove() operations per depth.

The way we look the remove() operations is reversed regarding the other operations,
the tree is full on the left and empty on the right.

The first interesting thing to notice here is the average depth of remove() operations,
Figure 38 is almost a perfect mirror of insert Figure 18. The same effect also happens for
each depth (Figures 39 and 19). It is also is similar considering the time taken for each
depth (Figures 40 and 20).

Like in insert() algorithm, it is a bit surprising the average remove() time in
Figure 37 does not follow the trend the average depth in Figure 38. If we look remove()
Algorithm 5, when the tree is dense there is only one RPC by level at line 19. When the
tree becomes sparse, the RPC at line 19 will only reach the next level, i.e. O(1), but it
will make an RPC at line 21, and chances becomes greater to pass condition at line 22
and make another RPC at line 23. So, at each level, it can make one RPC, two RPCs or
three RPCs. The one RPC case will happen more often when the tree is very populated
and start moving towards 3 RPCs when tree gets more sparse.

To summarize, both remove() and insert() operations will become faster as the
tree gets more dense.
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5.2.2 Experiment 02 - Sparse tree

5.2.2.1 Insert

.

In this section we consolidate, in five graphs, the statistics collected for insert()
operations on a sparse tree and analyze them.

First graph, Figure 42, shows how the insert() average time evolves as the tree has
few more elements.

Second graph, Figure 43, shows how the average depth taken by insert() operations
evolves as the tree has few more elements.

Third graph, Figure 44, shows how depths taken by insert() operations are dis-
tributed as the tree has few more elements.

Fourth graph, Figure 45, shows how the insert() average time, for each depth,
evolves as the tree has few more elements.

And fifth graph, Figure 46, shows the overall average time taken by insert()
operations for each depth.

Figure 42 – insert() mean time by nodes in a sparse vEB(2217).

The insert() mean time of a population of the last 2000 inserted elements. The tree is less
populated on the left of the chart and more populated on the right.



5.2. Results 95

Figure 43 – insert() average depth by nodes in a sparse vEB(2217).

The insert() average depth of a population of the last 2000 inserted elements. The tree is
less populated on the left of the chart and more populated on the right.

Figure 44 – insert() depths count, of last 2k elements, by nodes in a sparse vEB(2217).

A counting of depths taken by insert() operations of a population of the last 2000 inserted
elements. The tree is less populated on the left of the chart and more populated on the
right.
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Figure 45 – insert() depths time by nodes in a sparse vEB(2217).

The insert() mean time, by depth, of a population of the last 2000 inserted elements. The
tree is less populated on the left of the chart and more populated on the right.

Figure 46 – insert() depth average time of a sparse vEB(2217).

The average time taken by insert() operations per depth.

The average insert() time decreases on sparse trees (Figure 42) as more elements
are inserted, like in Experiment 01 with on dense trees (Figure 17). But it has different
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characteristics. The average depth of insert() operations increases on dense trees (Figures
18 and 19) while in opposite direction decreases on sparse trees (Figure 43). This together
with fact that insertion on new node costs much higher than inserting on a existing node
(Please see discussion in Subsection 5.2.1.1) make it easy to figure out why the average
time decreases as we insert more elements.

It is hard to visualize why the average depth for insert() operations decrease
(Figures 43 and 44) on sparse trees as we insert more elements. The reason for that is
because, at depth 13 (please refer to Table 8) we will start inserting keys, actually its
“high" with 24 bits, that are already present on the cluster, and therefore won’t need to go
down at the very left summary. This will start populating empty depth 14 trees inserting
the “low", with 24 bits on it. Notice depth 13 is a vEB(228) and looks like is not uniform
on its higher 24 bits.

Notice, that creating new paths down to empty depth 14, 15 or 16 trees may
increase the insertion time, but decreasing the average depth helps decrease the insertion
time. It could explain why the average time (Figure 42) at some point (specifically after
60 K elements) starts getting more stable.

It is hard to predict, but we believe, after this point, while the tree is still sparse,
the tree will start behaving like a dense tree at children of the very left vEB(228) summary.

In addition, the time for the deepest level decreases since beginning (Figure 45),
this is probably the same effect we got on Experiment 01, when the summary at very left
becomes dense.

While we can pretty much predict the average time will decrease when the tree
becomes dense, because there will be less nodes to create, it is hard to predict how it
will float in between. Probably we need more experiments to predict that, but that is not
an easy task because such big tree is too huge to became dense. This experiment took
around one hour to insert 65536 elements, even if we had enough memory, it would take
3.7 centuries to make a vEBt(2217) full.

5.2.2.2 Successor

.

In this section we consolidate, in five graphs, the statistics collected for successor()
operations on a sparse tree and analyze them.

First graph, Figure 47, shows how the successor() average time evolves as the tree
has few more elements.

Second graph, Figure 48, shows how the average depth taken by successor() opera-
tions evolves as the tree has few more elements.
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Third graph, Figure 49, shows how depths taken by successor() operations are
distributed as the tree has few more elements.

Fourth graph, Figure 50, shows how the successor() average time, for each depth,
evolves as the tree has few more elements.

And fifth graph, Figure 51, shows the overall average time taken by successor()
operations for each depth.

Figure 47 – successor() mean time by nodes in a sparse vEB(2217).

The successor() mean time of a population of the last 2000 inserted elements. The tree is
less populated on the left of the chart and more populated on the right.



5.2. Results 99

Figure 48 – successor() average depth by nodes in a sparse vEB(2217).

The successor() average depth of a population of the last 2000 inserted elements. The tree
is less populated on the left of the chart and more populated on the right.

Figure 49 – successor() depths count, of last 2k elements, by nodes in a sparse vEB(2217).

A counting of depths taken by successor() operations of a population of the last 2000
inserted elements. The tree is less populated on the left of the chart and more populated
on the right.
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Figure 50 – successor() depths time by nodes in a sparse vEB(2217).

The successor() mean time, by depth, of a population of the last 2000 inserted elements.
The tree is less populated on the left of the chart and more populated on the right.

Figure 51 – successor() depth average time of a sparse vEB(2217).

The average time taken by successor() operations per depth.

It is a bit surprising the average time of successor() operations decrease (Figure
47) on sparse trees while increases on dense trees (Figure 5.2.1.2), although it makes sense
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when we see the average depth decreasing for successor() operations (Figures 48 and 49).
The question is, why the average depth decreases? That’s because it will go down at the
very left of the summary to find the successor. In Algorithm 2, the condition in line 12
will fail because the tree is sparse, and it will enter down the summary at line 16.

5.2.2.3 Predecessor

In this section we consolidate, in five graphs, the statistics collected for predecessor()
operations on a sparse tree and analyze them.

First graph, Figure 52, shows how the predecessor() average time evolves as the
tree has few more elements.

Second graph, Figure 53, shows how the average depth taken by predecessor()
operations evolves as the tree has few more elements.

Third graph, Figure 54, shows how depths taken by predecessor() operations are
distributed as the tree has few more elements.

Fourth graph, Figure 55, shows how the predecessor() average time, for each depth,
evolves as the tree has few more elements.

And fifth graph, Figure 56, shows the overall average time taken by predecessor()
operations for each depth.

Figure 52 – predecessor() mean time by nodes in a sparse vEB(2217).

The predecessor() mean time of a population of the last 2000 inserted elements. The tree
is less populated on the left of the chart and more populated on the right.
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Figure 53 – predecessor() average depth by nodes in a sparse vEB(2217).

The predecessor() average depth of a population of the last 2000 inserted elements. The
tree is less populated on the left of the chart and more populated on the right.

Figure 54 – predecessor() depths count, of last 2k elements, by nodes in a sparse vEB(2217).

A counting of depths taken by predecessor() operations of a population of the last 2000
inserted elements. The tree is less populated on the left of the chart and more populated
on the right.



5.2. Results 103

Figure 55 – predecessor() depths time by nodes in a sparse vEB(2217).

The predecessor() mean time, by depth, of a population of the last 2000 inserted elements.
The tree is less populated on the left of the chart and more populated on the right.

Figure 56 – predecessor() depth average time of a sparse vEB(2217).

The average time taken by predecessor() operations per depth.

For predecessor applies exactly the same analysis as successor.
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The average time of predecessor() operations decrease (Figure 52) on sparse trees
while increases on dense trees (Figure 27), although it makes sense when we see the average
depth decreasing for predecessor() operations (Figures 53 and 54). The question is, why the
average depth decreases? That’s because it will go down at the very left of the summary
to find the predecessor. In Algorithm 3, the condition in line 12 will fail because the tree
is sparse, and it will enter down the summary at line 16.

5.2.2.4 Search

In this section we consolidate, in five graphs, the statistics collected for search()
operations on a sparse tree and analyze them.

First graph, Figure 57, shows how the search() average time evolves as the tree has
few more elements.

Second graph, Figure 58, shows how the average depth taken by search() operations
evolves as the tree has few more elements.

Third graph, Figure 59, shows how depths taken by search() operations are dis-
tributed as the tree has few more elements.

Fourth graph, Figure 60, shows how the search() average time, for each depth,
evolves as the tree has few more elements.

And fifth graph, Figure 61, shows the overall average time taken by search()
operations for each depth.

Figure 57 – search() mean time by nodes in a sparse vEB(2217).

The search() mean time of a population of the last 2000 inserted elements. The tree is less
populated on the left of the chart and more populated on the right.
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Figure 58 – search() average depth by nodes in a sparse vEB(2217).

The search() average depth of a population of the last 2000 inserted elements. The tree is
less populated on the left of the chart and more populated on the right.

Figure 59 – search() depths count, of last 2k elements, by nodes in a sparse vEB(2217).

A counting of depths taken by search() operations of a population of the last 2000 inserted
elements. The tree is less populated on the left of the chart and more populated on the
right.
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Figure 60 – search() depths time by nodes in a sparse vEB(2217).

The search() mean time, by depth, of a population of the last 2000 inserted elements. The
tree is less populated on the left of the chart and more populated on the right.

Figure 61 – search() depth average time of a sparse vEB(2217).

The average time taken by search() operations per depth.

All the insertions on a sparse tree stops at cluster depth 1 and then goes down
into the very left summary. Thus, all searches will go at most to depth 1 because search
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Algorithm 1 don’t look summaries. This is pretty clear on the search graphs except with
only one surprise. We really expected to see an inclination of zero on average search()
time Figure 57 and we got a slightly decreasing trend. Although it is better than what we
expected, it is not fair to accept it. Fortunately, we repeated this experiment and got a
slightly increasing trend line, and therefore, we conclude it is just a floating. By the way,
it is floating in only 100 micro-seconds range, which is definitely in the range error of our
measurement.

5.2.2.5 Remove

In this section we consolidate, in five graphs, the statistics collected for remove()
operations on a sparse tree and analyze them.

First graph, Figure 62, shows how the remove() average time evolves as the tree
has few more elements.

Second graph, Figure 63, shows how the average depth taken by remove() operations
evolves as the tree has few more elements.

Third graph, Figure 64, shows how depths taken by remove() operations are
distributed as the tree has few more elements.

Fourth graph, Figure 65, shows how the remove() average time, for each depth,
evolves as the tree has few more elements.

And fifth graph, Figure 66, shows the overall average time taken by remove()
operations for each depth.
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Figure 62 – remove() mean time by nodes in a sparse vEB(2217).

The remove() mean time of a population of 2000 elements. The tree is less populated on
the right of the chart and more populated on the left.

Figure 63 – remove() average depth by nodes in a sparse vEB(2217).

The remove() average depth of a population of 2000 elements. The tree is less populated
on the right of the chart and more populated on the left.
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Figure 64 – remove() depths count, of last 2k elements, by nodes in a sparse vEB(2217).

A counting of depths taken by remove() operations of a population of 2000 elements. The
tree is right populated on the left of the chart and more populated on the left.

Figure 65 – remove() depths time by nodes in a sparse vEB(2217).

The remove() mean time, by depth, of a population of 2000 elements. The tree is less
populated on the right of the chart and more populated on the left.
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Figure 66 – remove() depth average time of a sparse vEB(2217).

The average time taken by remove() operations per depth.

Like in dense trees, average time taken by remove() operations (Figure 62) is almost
a mirror of insert() operations (Figure 42). The same happens regarding the average depth
in Figures 63 and 43, and Figures 64 and 44. And also with the average time taken by
depth (Figures 65 and 45).

In this case, because the tree is filled at the left, deleting nodes will start having
to delete summaries at the left, so, more the tree is empty, more it will have to delete
summaries down at the left (Algorithm 5 line 21).

Unfortunately we don’t know how to explain why the average time taken by remove()
operations at depth 16 decreases while slightly increases for other depths (Figure 65).

5.2.3 Experiments: last analysis

As we can see from all average time by depths (Figures 21, 26, 31, 36, 41, 46, 51,
56, 61, 66), they are linear as it ought to be. Notice depth = lg lgU , this together with
the analysis we just did in the previous section, give us confidence that our distributed
implementation holds lg lgU time cost.

That said, let’s “shoot in the foot". Remember the van Emde Boas recursion is
T (2m) = T (2m/2) +O(1) and it gives O(lg lgU) as we transcribed in Section 3.1.

This work has been floating between theory and practice. It is theoretical work
brought into practice with several aspects of both sides. Definitely our proposed distributed
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vEB holds its O(lg lgU) in theoretical field. But it may no be true in practical field, or at
least very hard to see due to huge constants. That’s because the computer power may not
be enough to deal with it.

The statement on previous paragraph seems to be a contradiction as we just showed
practical experiments proving it holds O(lg lgU) for a huge vEB(2217). But it is not, and
there are two reasons for that.

The First is the option “force_maxsize" (Appendix A), that was set to “true". We
did it to make our analysis easier. In a practical final product it will be set to “false",
to improve performance, and would affect the results, specially considering packages
with timeouts/retry. Remember we have discarded samples with timeouts/retry from our
analysis.

The second is related to the time taken by primary logic operation on keys, for
instance, bitwise operations ‘AND, OR, XOR, LSHIFT ans RSHIFT’. These operations
takes O(1) time because they map directly to one cycle CPU instruction. Suppose we
are working with an ARM7, it has bitwise operations for keys up to vEBt(232). Past
that, it has to loop on remaining bytes to complete the operation. We have executed an
extra experiment to show time taken by XOR operation on keys of different sizes using a
Intel(R) Core(TM) i7-5500U CPU 6, capable of AVX2 instructions and therefore 256-bits
operations. Please see Figures 67 and 68 for the results.

On this extra experiment we tested the time taken to find a key in the Registry
(See Section B), this is basically the time to calculate a hash (Appendix D). The same
analysis applies comparing keys or calculating “high" and “low" values.

As you can see on the graphs, it curve starts getting higher after depth 8 which is
256-bit (See Figure 67).

Bringing such cost into our recursion, it becomes T (2m) = T (2m/2) + Θ(lg 2m). And
solving this recursion will end up with Θ(lgU lg lgU).

That’s said, we are still very comfortable with it, because this analysis just comes
with a lot of preciosity and any algorithm out there, will also have its O(1) comparisons
transformed into O(lgU) time.

Why haven’t we seen such effects on our experiments? That’s because the time to
calculate hashes ranges from 250 nanoseconds (not considering measurement interferences)
to 50 micro-seconds and that just gets lost in fluctuations of RPCs that takes milliseconds

Finally, regarding the time to expand the tree from height vEB(2m) to vEB(2m∗2) it
is exactly the same cost of vEB(2m).remove(vEB(2m).min()) as we can see in Algorithm 8
and there is no need to further experiment.
6 <https://ark.intel.com/products/85214/Intel-Core-i7-5500U-Processor-4M-Cache-up-to-3_00-

GHz>

https://ark.intel.com/products/85214/Intel-Core-i7-5500U-Processor-4M-Cache-up-to-3_00-GHz
https://ark.intel.com/products/85214/Intel-Core-i7-5500U-Processor-4M-Cache-up-to-3_00-GHz
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Figure 67 – Time taken by registry.find() on 2000 keys for each height.

A registry.find() operation basicly performs a XOR on the bytes of the key.

Figure 68 – Time taken by registry.find() on 2000 keys for keys of different sizes in bits.

A registry.find() operation basicly performs a XOR on the bytes of the key.
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6 Conclusion and Future work

It is hard to predict the behavior of a sparse vEB tree, specially because it is
very sensitive to the chosen input data. Either way, when a huge tree eventually becomes
dense, we really do expect it to work like the small dense tree shown in our experiments.
For instance, insert and remove operations will become faster and search, successor and
predecessor operations will become slower, but they will be limited by high and upper
bounds.

The main contributions of this work are:

• We brought van Emde Boas tree, that performs insert, successor, predecessor, search
and remove operations in O(lg lgU) time, to the world of distributed big data
structures. Our distributed vEBt solution overcomes the memory limitation of the
original vEB tree, and seems to be a serious candidate to beat nowadays big data
structures that performs same operations, or a subset of it, in O(lg n) time cost;

• We showed how to expand a vEB tree from 2m universes into 2m×2 universes in
O(lg lg 2m) time cost. And brought into discussion why not to expand to 2m+1

universes;

• We showed how to map every single node of a vEB tree into a Global Unique Id
(GUID). And our GUID remains valid even if the tree expands;

• We showed how to implement a Distributed vEB tree on top of any distributed
protocol as long as it supports multicast or broadcast;

• We designed and implemented a hand-crafted minimalist distributed protocol on top
of UDP, and proved by experiments in local network it holds O(lg lgU) time cost;

• We brought into discussion how a vEB tree is populated and behaves in sparse or
dense trees. It is still a superficial discussion but we have not seen such discussion
out there;

• We designed an architecture that is very suitable for research and experiment. Making
it easy to change the police how nodes are created, e.g. if it is distributed or not,
or even if it is a vEB node or some other structure that supports the same set of
operations. The architecture also makes it easy to replace the underlying distributed
protocol without affecting any other code of the solution. And finally, makes it easy
to collect and save statistics from several different threads without changing methods
interfaces.
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6.1 Future work

• Optimizations:

– Try to remove the “max" element from the inner trees in the same way as “min".
It would avoid having to deal with duplicated data across the network. This
may also may speed up some operations;

– Find out a good compression algorithm for serialized data. This could improve
network communication;

– Run tree requests concurrently, inspired in (KUŁAKOWSKI, 2013)(WANG;
LIN, 2007), and try to make it O(1) amortized time cost;

– Use basic type integers (u64, u16 and u8) when the tree is at level of universe
264 and lower;

– Use fine optimizations like static polymorphism;

– Miscellaneous improvements like document the code and write a user manual;

• Make a pseudo local version of vEB tree, changing the Linux (or others open source
O.S.) kernel to supply memory from the network transparently to the process. How
the vEB will benefit from OS caching mechanism? Will it have few cache-misses? In
addition it is a very challenging solution that could be used every where else;

• Try to make an implementation of a vEB that accept string as keys;

• Implement and run experiment with a consistent hash Cheater;

• Investigate if we could use a consistent hash (KARGER et al., 1997) to replace our
solution based in multicast;

• Network and Distributed System:

– Make it more robust protocol;

– Try to make a protocol that not need to rewind all RPC calls across hosting
nodes. for instance, the search operation could return directly to the root when
it hit the base case of the recursion;

– Implement package framing to allow send more than 65k in a single message, or
even work with IPv6 jumbogram packages allowing to send up to 4 GB UDP
packages;

– Tryout different protocols like CoAP, MQTT, MPI, UDT and even TCP;

– Make experiments on WANs or Internet;
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– Implement a protocol that can change dynamically based on QoS or some
metrics. That would automatically choose the best underlying protocol based
on the network conditions;

– Make it possible to negotiate with the peer what protocol and parameters to
use. That is, negotiate capabilities;

– Add multicast TTL/HOPS to the parameter options and test with machines
on Internet;

– Implement the lower communication class to make the tree work thorough
infinite band (CHU; KASHYAP, 2006);

– Make experiments with link aggregation 1;

– Compare Power Consumption using different approaches;

• Make a thin wrapper over other tree implementations, like Btree, and test its
performance. For example, a Btree could be used at level 232 and lower;

• Design and implement a definitive NoSQL solution:

– Handle transactions, load balance, redundancy and fault tolerance;

– Develop binding for other programming languages

• Benchmarking:

– Handle transactions, redundancy and fault tolerance;

– Compare performance against Redis, Google BigTable, Apache HBase, etc ...;

– Use test benchmarks (SEN; FARRIS; GUERRA, 2013) out there for performance
and correctness;

• Mastering the van Emde Boas structure:

– Make an in depth study of tree behavior for several different pattern of data
and predict lower and higher bounds;

– Develop a tool to visualize the tree on a 3D virtual world, using OpenGL or
Unreal Engine. The tool could would be rendered in realtime, by collecting data
just like the “cheater". In addition it could be drawn together with realtime
viewer of some statistics and graphics. Also could allow parameters to be
changed in realtime. This solution would be very useful for didactics and to
study the behavior of data structure on different data;

1 <http://linux-ip.net/html/ether-bonding.html>

http://linux-ip.net/html/ether-bonding.html
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APPENDIX A – Program Options

The testing program can receive the following command line options:

• port - The Multicast port number

• multicast_group - The Multicast address

• role - The role of the application (node).

– "root" - The application hold the tree root.

– "client" - The application is just a client to a root. (not implemented)

– "node" - The application will host nodes.

– "cheater" - The application will be a Cheater.

• timeout - Timeout in milliseconds to wait for Acks

• jump_multi - Used to calculate long waits

• retries - Number of retransmissions in case doesn’t receive an acknowledgment.

• enough_servers_available - Max number of server to randomly choose to create a
node. The client node will wait "timeout" until "enough_servers_available" host
servers respond before choose between them;

• memory_threshold - The minimal amount of free memory required to host a vEB
node.

• udp_buf_size - The size of the UPD message (id + key + metadata = 16384 * 2 +
1024)

• thread_pool_size - The initial size of threads in pool to handle received messages;

• log_level - The verbosity of log

– "trace" - Very high verbose messages that generates a lot out information to
help developer in troubleshooting/debugging tasks;

– "debug" - Debugging messages for developers;

– "info" - Most relevant output messages for user;

– "warning" - Warning messages that can’t indicate potential problems;

– "error" - Error messages that application can’t recover from.



126 APPENDIX A. Program Options

• root_uuid - Unique GUID of the Root tree (when "role" option is set to "root")

• force_maxsize - If true all packages (excepts some types of acknowledgments) are
set to "udp_buf_size";

• statistics.summary_only - If true, print only statistics summary, otherwise prints all
collected entries;

• multicast_loopback - If true, can’t send/receive its own messages

• no_hosting - If true, will host vEB nodes. (can only be used with "role" of to "root"
or "node");

• self_cheating - Useful when developing using a stand-alone machine.

• test.run - If true will run tests, only make sense with "role" of "root" or "client";

• test.maxbits - The test generates number randomly. This is the number of bits used
to represent such numbers;

• test.mode - The type of the test that will be executed

– "performance" - To test performance

– "correctness" - To test correctness

• has_cheater - If true, will send a answer.alloc_cheater message and wait for cheater
AckF;

• service - Usually it will be true for "node" and "cheater" applications, for root, it
true, the application exists finishes after the test in done.
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APPENDIX B – Software Architecture

The software architecture must be designed to satisfy the following software re-
quirements. The ones listed first have priority over the next ones:

1. The architecture must allow the implementation of this research in time;

2. The architecture shall be as extensible as possible to make it easy to implement
most of the future works presented in Conclusion chapter;

3. Make it possible to write code for experiments described in this document;

4. Make it easy to collect statistics from the experiments;

5. It must be easy to configure the arrangement of Nodes on the network. As an
example, in one experiment we could make all 216 nodes local, on another experiment
we may want to have local nodes only if 30% of RAM memory available, and in
another experiment we may want to always make nodes remote, so there is always
an RPC between nodes on the tree;

6. Ultimate performance, while speed has a bit of priority over memory;

7. Code must run on Linux, if possible on Windows and Android too;

8. It must be possible to compile the code from an IDE or command line;

9. Code and comments must all be written in English to make it easier for others
researchers to engage;

10. the code must be developed in C or C++;

11. whenever suitable use Design Patterns.

With the requirements in mind, let’s see how our software architecture evolved by
looking some class diagrams.

In Figure 69 we depict the most important class of our Tree, the trees themselves.

• ITree - The interface that defines all operations any tree must implement;

• IVebGlobal - The interface any vEB tree must implement. Notice it is just the ITree
interface plus an “expanded()" method that is used when expanding the universe of
our whole tree;
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«interface»
ITree

+	insert(key	:	Natural,	value	:	ISerializable)
+	remove(key	:	Natural)
+	search(key	:	Natural)
+	successor(key	:	Natural)
+	predecessor(key	:	Natural)
+	min()
+	max()
+	universe()	:	short
+	id()

Btree

VebU1

VebRoot
-	veb_	:	ITree

RbTree

IVebGlobal

+	expanded()

VebClient

Veb

+	min()
+	max()
+	set_min(key_value	:	pair<Natural,	iSerializable>)	:	pair<Natural,	iSerializable>
+	set_max(key_value	:	pair<Natural,	iSerializable>)	:	pair<Natural,	iSerializable>

VebLocal1
-	min_	:	pair<Natural,Object>
-	max_	:	pair<Natural,Object>

VebSummaryLocal1
-	min_	:	Natural
-	max_	:	Natural

VebRemote
-	summary_	:	ITree
-	min_	:	pair<Natural,Object>
-	max_	:	pair<Natural,Object>
-	cluster_	:	ICluster

VebLocal
-	summary_	:	ITree
-	min_	:	pair<Natural,Object>
-	max_	:	pair<Natural,Object>
-	cluster_	:	ICluster

VebSummaryLocal
-	summary_	:	ITree
-	min_	:	Natural
-	max_	:	Natural
-	cluster_	:	ICluster

Figure 69 – Trees class diagram.

• Veb - It is, together with VebU1, the most important classes. It is an abstract class
the implements all vEB algorithms, described in Section 3.1 of this document;

• VebU1 - Like “Veb", but this class implements the algorithms vEB tree with universe
size of 2, while Veb implements trees where universe size is greater than 2;

• VebClient - It is a vEB that doesn’t implement any real vEB logic, it simply just call
a RPC method on a real tree somewhere else. So, this class depends on a underlying
RPC mechanism we will see soon in this section;

• VebRoot - This class also doesn’t implement any vEB algorithms. It uses the Proxy
Design Partner to delegates methods the real vEB class, that can be any class that
inherits from IVebGlobal; Actually, a VebRoot really implements one single method,
“expand()", this method is called automatically by VebRoot, before a delegated call
to “insert()", if the key value is greater that then vEB universe; In addition to that,
VebRoot also collects statistics D;

• VebLocal - It is a regular implementation of a vEB tree, with a VebU1 or Veb
summary and a local ClusterArray or ClusterHashTable (we will see our Cluster
implementations on the next figure);

• VebSummaryLocal - It is like VebLocal but its elements doesn’t hold satellite data;

• VebRemote - It is a Veb where its summary is either a VebU1 (only with universe is
2) or a VebClient and its cluster is a ClusterRemote.
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• VebLocal1 - It is used to implemet a local vEB of universe 2;

• VebSummaryLocal1 - It a VebLocal1 for summaries, i.e. a VebLocal1 without satellite
data;

• BTree and RbTree - It implements a B-Tree and RedBlack-Tree respectively. Actually,
they haven’t been implemented, but they a here just to show that we could have
such trees at almost any place of our solution where a ITree is used, for instance,
summaries, and tree pointed by clusters;

«interface»
ICluster

+	at(index	:	const	Natural	&)
+	alloc(index	:	const	Natural	&)
+	expand_set(tree	:	shared_ptr<ITree>)

ClusterSummaryHashTable
-	hashtable_	:	unordered_map<Natural,	shared_ptr<ITree>>

ClusterHashTable
-	hashtable_	:	unordered_map<Natural,	shared_ptr<ITree>>

ClusterArray
-	array_	:	vector<shared_ptr<ITree>>

ClusterRemote

ClusterSummaryArray
-	array_	:	vector<shared_ptr<ITree>>

Figure 70 – Clusters class diagram.

Let’s see the design of clusters shown in Figure 70

• ICluster - Cluster’s interface;

• ClusterArray and ClusterSummaryArray - It is the regular cluster implemented as
an array. Used by classes like VebLocal and VebSummaryLocal;

• ClusterHashTable and ClusterSummaryHashTable - It is a local cluster, but imple-
mented as a hash table instead of an array. It has been developed and tested just to
prove our architecture but wasn’t really used in any of our experiments;

• ClusterRemote - It is the cluster instantiated by VebRemote, when elements of this
cluster are accessed a RPC takes places;

Let’s see the design of class involved in RPC shown in Figure 71, Figure 72 and
Figure 73.

• ITreeRpc - This interface is a copy of ITree interface. This is the interface used by
VebClient to execute method methods;
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«interface»
IProcessor

+	process(buffer	:	vector<uint8_t>,	addr	:	shared_ptr<AddressInfo>,	server	:	shared_ptr<Server>)

IChannel

+	open()
+	close()
+	FILE*()
+	sync(unicast_addr	:	shared_ptr<const	AddressInfo>,	force_min_size	:	bool)
+	mutex()
+	mac_addr()	:	const	uint8_t	*

ObservableObserver

ProcessorCheater

ChannelMulticast

ThreadPool

ServerMulticast

WorkerThread

«interface»
ITreeRpc

+	insert()
+	remove()
+	search()
+	successor()
+	predecessor()
+	min()
+	max()
+	universe()
+	id()
+	exist()

TreeRpcMulticast

+	serialize(stream	:	FILE*)
+	deserialize(buffer	:	vector<uint8_t>)

ProcessorNode

Server
-	pool_	:	ThreadPool
+	start()
+	stop()
+	join()
+	exiting()	:	bool

Figure 71 – RPC class diagram.

• TreeRpcMulticast - Is the class responsible to marshalling/unmarshalling a RPC
call. This class also has some knowledge of its underlying channel, for instance
ChannelMulticast, and implements all client RPC logic, like waiting and retries. This
class is couple with ProcessorNode and ProcessorCheater;

• IChannel and ChannelMulticast - This class implements the client side communi-
cation channel. ChannelMulticast can be used to write UDP unicast and multicast
messages. As an example, it could be implemented a ChannelTcp class that han-
dles TCP messages, or ever ChannelRS232 that handles RS232 messages, but, in
both cases, probably TreeRpcMulticast should be replaced for equivalent classes to
optimize for underlying channel. It is also important to say that it is an unidirec-
tional communication channel; This class, also works like a service that handle and
synchronizes calls from multiple threads;

• Server and ServerMulticast - It is the peer class for IChannel and ChannelMulticast
classes. Server classes is the host side communication channel. It is also important
to say that it is an unidirectional communication channel. There will be only one
instance of ChannelMulticast, and received raw messages are add to the ThreadPool
to be processed;

• ProcessorNode - Once a message is received by the Server and added to the Thread-
Pool, an WorkerThread is created or awaken to handle the raw received buffer for
processing. It then calls TreeRpcMulticast to parse the buffer, checks if Observalble
is there is an Obeserver waiting for such message, and if not, if handle the RPC call.
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This class is also responsible to handle duplicated request messages. Usually it will
be handling method calls and AckF messages;

• ProcessorCheater - It is like ProcessorNode but much more simply, just tracking
method request and node creations.

Except ITreeRpc, Observable, Obeserver, WorkerThread and ThreadPool class in
Figure 71, all other classes are couple, so if you need to implement another RPC mechanism
probably you will have to implement them all.

Other classes that worths highlight are:

• Natural - This class encapsulates a GMP integer 1 and has helper functions to handle
huge number. In this research we are working with number from 0 to 2217 − 1;

• Id - It has method to manipulate and map node Ids D;

• Transaction - This class uniquely identifies a RPC call in the whole system. Because
of this class it is possible to respond/receive Acks for the right RPCs and to detect
duplicated messages;

• Registry - It is basically a hash table of all node Ids hosted by a "node" machine;

• Factory - It is used to dynamically instantiate the right vEB, for instance, when a
VebRoot is expanding or when handling the request to create a new node D;

• Properties - This class is in charge of parsing program input parameters A. A object
of this class is instantiated as a Singleton Design Patterns, and several pieces of the
program queries the parameters independently. We have decided to use Singleton
over Dependency Injection to avoid overwhelm the code with everywhere passing a
reference to the Properties object;

And last, but not least, Statistics class.

The Statistics class was designed to be used in several parts of the code, more
than that, it may be used in reentrant code called simultaneous by several threads adding
statistics data to completely unrelated tasks. For that, we had decided to use a sort of
Singleton per thread approach.

When a thread decides it wants to collect statistics, it calls include_thread_sample()
D. It creates an Object for that thread that holds all statistics collected to that thread.
Once that thread is done, it calls normalize_level() D to calculate how many levels that
1 <https://gmplib.org/>

https://gmplib.org/
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method went down in the vEB tree, and finally calls “statistic::Statistic::add()" to save it.
Have a look in VebRoot::insert() D as an example.

On the host side, the ProcessorNode class also calls include_thread_sample() to
start collecting statistics, the Veb trees call “statistic::thread_sample_set_level(universe_)"
to set the deepest level a method went in, then, the host side calls get_thread_sample()
just before respond it back serialized to the client. Then finally, TreeRpc client side updates
the statistics with peer collected statistics and with the number of timeouts and RPC calls
D (lines 10, 28, 29, 117-119, 136-138). Also notice that, lines 28-29 executes in different
a WorkerThread than line 10, it is allowed as long as the thread running line 10 doesn’t
finish before threads running lines 28-29, and that will be the case, because the “observer"
handle (line 17) will remove itself from the Observable when its destructor is called.

Now let’s revisit the initial requirements and double check if our architecture deals
with it.

1. The architecture most allow the implementation of this research in time;

It was required 3 more months to finish our research, but we believe it did so, I guess
we implemented the minimalist software able to run the experiments. We have tried
simpler solution but none could survive to our experiments.

2. The architecture shall be as extensible as possible to make it easy to implement
most of the future works presented in Conclusion chapter;

Yes, the RPC classes are separated, the Factory class allows to create very flexible
tree topology, and other classes are encapsulated and not dependent on RPC or
vEB classes. Due to the ITree interface we can virtually have any node implemented
by any Tree. Also, the Id mapping makes it possible to create a Network-Agnostic
solution.

3. Make it possible to write code for experiments described in this document;

Yes, as we did so.

4. Make it easy to collect statistics from the experiments;

Yes, we did so. We developed an easy to use API plus a module save statistics in csv
format just ready to be imported by tools like LibreOffice Calc. See Figure 80.

5. It must be easy to configure the arrangement of Nodes on the network. As an
example, in one experiment we could make all 216 nodes local, on another experiment
we may want to have local nodes only if 30% of RAM memory available, and in
another experiment we may want to always make nodes remote, so there is always
an RPC between nodes on the tree;

Yes, it is possible due to Factory class.
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6. Ultimate performance, while speed has a bit of priority over memory;

To be honest, in order to comply with the previous requirements and due to time
restrictions we haven’t really look at this very deeply. You could have used some
low latency C++ programming techniques here but we didn’t by the time of this
writing.

7. Code must run on Linux, if possible on Windows and Android too

We have only tested on Linux. Due to uncommon characteristics to this software, we
decided to implement the RPC module using BSD sockets. So, it won’t compile in
Windows. Probably the RPC module could be written using Boost library but it
will left for future work.

8. it must be possible to compile the code from an IDE or command line

Yes, we are compiling it using CMake, using both QT Creator IDE and command
line.

9. code and comments must all be written in English to make it easier for others
researchers to engage;

Yes.

10. the code must be developed in C or C++;

Yes, C++, Boost, GMP.

11. whenever suitable use Design Patterns.

Yes, we have Singleton, Proxy, Observer, Factory and Thread Pool Design Partners,
but to be honest we hadn’t too much time to really consider more than it, there may
be some places we could apply Design Patterns for better software quality, probably
a good time for it would be when adopting C++ low latency techniques.

The software was a way very complex to implement. Node are running several
threads concurrently, their access tree Register, send/receive messages simultaneous from
different source. All of this together with the complexity of dealing with huge 131072 bit
number and the complexity of implementing a UPD based RPC mechanism implemented,
i.e. implement retransmission, duplication detection, congestion and flow control on unicast
and multicast messages. Because of this, to make it work we have the following additional
techniques or tools:

• We customized Boost log library to fill our needs. See a typical log output in Figure
74;

• tcpdump was heavily used. See Figures 75 and 76;
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• Scripts to notify when some test finishes. See Figure 77;

• Valgring 2 memory leak detection tool used. See Figure 78. At the beginning we
didn’t used it because using Modern C++ pretty much eliminates leak problems,
but we are using a C library, lib GMP, and thanks to Valgrind we found a leak in a
particular situation using lib GMP and fixed it;

• Even tough there is only one developer, due to the complexity of the code, using a
decent source control tool was crucial. We have used git on a free on-line repository
Bitbucket 3. See Figure 79.

In this chapter we have highlighted the most important features of the software
architecture used in this project. The complete source code can be found in <https:
//bitbucket.org/dveb/dveb>, you can also send an email to the author “Edgard Lima <
edgard.lima@gmail.com >" asking repository access.

2 <http://valgrind.org/>
3 <https://bitbucket.org/>

https://bitbucket.org/dveb/dveb
https://bitbucket.org/dveb/dveb
http://valgrind.org/
https://bitbucket.org/
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Figure 72 – RPC Client PoV.
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Figure 73 – RPC Host PoV.
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Figure 74 – Typical log output.

The first field is the ’timestamp’ with micro-seconds precision, the second field is the
’thread id’, and the third field is the ’severity’. All of this, including coloring by severity
level, are done automatically. The application only provides the fourth field, the ’message’,
with the indication of the severity, just using conventional C++ insertion operator (“<<").



138 APPENDIX B. Software Architecture

Figure 75 – TCP dump.

The blue square highlights the first 96 bytes of a UDP package containing the marshelled
RPC call showed in Figure 76. For instance, “0900 0000" is the insert() method call, “2786"
is the port number of the sender it will be replied to, the four next 0000’s are the tree
uuid, “0000 7b7b" is the transaction sequential number, “061a 0000" is the process pid,
“1c39 4754 8656" is the mac address of the sender, “1000" is the universe, “00e0 ff01" is the
node id (it appears on the first line of the Figure 76 because this is a stand-alone run with
’self_cheater’ option set to true).
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Figure 76 – Trace log of a Insert operation.

Notice some data printed here in Figure 75.

Figure 77 – Automated e-mail.

Email notifying the experiment “32" has finished. The experiment took 9h 53 min 30
seconds without errors.
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Figure 78 – Valgrind.

Valgrind reporting there is no memory leaks.
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Figure 79 – Bitbucket git repository.

Few entries on commit history.

Figure 80 – Statistic.

For each method an individual file is saved just ready to be imported.
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APPENDIX C – Reproducing the
experiments

C.1 General preparation

The steps listed in this subsection apply to all experiments. Specific customizations
will be described at the individual experiments subsections.

We will use the machines listed in Table 10 for all experiments. They are connected
to a DLINK DGS-1210-28 Gigabit switch 1 running factory settings. And all the bellow
preparations step must be taken in each of them.

Table 10 – Machines

Machine RAM CPU IP NIC

mustang 4 GB i7 870 @ 2.93GHz 192.168.1.7 Realtek RTL8111/8168/8411 PCIe GB (rev 03)
camaro 6 GB i7 940 @ 2.93GHz 192.168.1.15 Realtek RTL8111/8168/8411 PCIe GB (rev 03)
ferrari 16 GB i7-3770 @ 3.40GHz 192.168.1.3 Realtek RTL8111/8168/8411 PCIe GB (rev 09)
lamborgine 24 GB i7 X 980 @ 3.33GHz 192.168.1.5 Realtek RTL8111/8168/8411 PCIe GB (rev 03)
bugatti 32 GB i7-4820K @ 3.70GHz 192.168.1.9 Realtek RTL8111/8168/8411 PCIe GB (rev 09)
maserati 42 GB i7-4820K @ 3.70GHz 192.168.1.11 Realtek RTL8111/8168/8411 PCIe GB (rev 09)

List of machine used during experiments.

All machines are running Debian 9.0 Stretch and g++ 6.3.0.

First of all, make sure all machines have the latest version of code and compile it.

git pull
mkdir build_b && cd build_b && cmake -DCMAKE_BUILD_TYPE=Release
../bigdata && make VERBOSE=1
cd ..
mkdir build_t && cd build_t && cmake -DCMAKE_BUILD_TYPE=Release
../tests && make VERBOSE=1

Now, increase kernel’s sockets queues and buffers with the following commands:

1 <https://dlink.com.br/sites/default/files/product_download/dgs-1210-
28_c1_datasheet_01hq_pt_01_0.pdf>

https://dlink.com.br/sites/default/files/product_download/dgs-1210-28_c1_datasheet_01hq_pt_01_0.pdf
https://dlink.com.br/sites/default/files/product_download/dgs-1210-28_c1_datasheet_01hq_pt_01_0.pdf
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sudo su -

sysctl -w net.core.wmem_max=134217728
sysctl -w net.core.rmem_max=134217728
sysctl -w net.ipv4.udp_mem=1638400 1638400 1638400
sysctl -w net.core.somaxconn=4096
sysctl -w net.core.netdev_max_backlog=262144
sysctl -w net.core.optmem_max=134217728
sysctl -w net.ipv4.udp_rmem_min=65535
sysctl -w net.ipv4.udp_wmem_min=65535

Those values are a probably an overkill. We have set it because ate some earlier
stage in the development we had problems with packets arriving on the machine and
showed up on tcpdump, but not read on the process. That is because the default socket
is very small for our needs. We are pretty much flooding the machines with 48K bytes
UDP packets, then the socket buffer attached to the process gets full and start dropping
packages. On later versions of our implementation we developed a congestion/flow control
on our protocol, probably the default values are still small for our needs but we don’t
probably need such overkill. Further analysis on this will be left for future research with
protocols.

Now, stop the linux Graphical service to release extra memory and cpu, and disable
memory swapping to avoid another big source of uncertainty. See the commands in the
grayed box bellow.

sudo su -

/etc/init.d/gdm stop; /etc/init.d/lightdm stop; /etc/init.d/gdm3 stop;
/etc/init.d/x11-common stop

swapoff -a && sh -c sync && sh -c ’echo 3 > /proc/sys/vm/drop_caches’

For all experiment there are configurations files to be used. One way to edit those
files other than copy paste from here is;

./test help > name.conf

Then, edit the generated file according and execute with:
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./test −− < name.conf
# or, to save the output
./test −− < name.conf 2 > &1 | tee result.vt100

Additionally we also recommend using tmux on all machines like in Figure 81
because the chance to drop your ssh connection is high due to intensive network traffic.

Figure 81 – Tmux session.

Table 11 – Machines/Configuration

Machine Configuration

mustang root.conf
camaro node.conf
ferrari node.conf
lamborgine node.conf
bugatti node.conf
maserati cheater.conf

Configuration for each machine.
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C.2 Experiment 01

root.conf
port 34343
multicast_group "225.0.0.37"
role "root"
timeout 4
jump_multi 12
retries 8
enough_servers_available 1
memory_threshold 20
udp_buf_size 33792
thread_pool_size 12
log_level "info"
root_uuid 0
force_maxsize true
statistics {

summary_only false
} multicast_loopback false
no_hosting true
self_cheating false
tests {

run true
maxbits 16
mode "performance"

}
has_cheater true
service false
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node.conf
port 34343
multicast_group "225.0.0.37"
role "node"
timeout 4
jump_multi 12
retries 8
enough_servers_available 1
memory_threshold 20
udp_buf_size 33792
thread_pool_size 12
log_level "info"
root_uuid 0
force_maxsize true
statistics {

summary_only false
} multicast_loopback false
no_hosting false
self_cheating false
test {

run false
maxbits 16
mode "performance"

}
has_cheater true
service true
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cheater.conf
port 34343
multicast_group "225.0.0.37"
role "cheater"
timeout 4
jump_multi 12
retries 8
enough_servers_available 1
memory_threshold 20
udp_buf_size 33792
thread_pool_size 12
log_level "info"
root_uuid 0
force_maxsize true
statistics {

summary_only false
} multicast_loopback false
no_hosting true
self_cheating false
tests {

run false
maxbits 16
mode "performance"

}
has_cheater true
service true

C.3 Experiment 02

For this experiment use the configuration files of Experiment 01 just change the
value of "tests.maxbits" to 131072:

root.conf

test {
run true
maxbits 131072
mode "performance"

}
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node.conf

tests {
run false
maxbits 131072
mode "performance"

}

cheater.conf

test {
run false
maxbits 131072
mode "performance"

}

C.4 Correctness test

Use the same configuration files from Experiment 01 except for the value of
"test.mode" to "correctness"

Repeat the test use the same configuration files from Experiment 02 except for the
value of "test.mode" to "correctness"

root.conf

test {
run true
maxbits 16
mode "correctness"

}

node.conf

test {
run false
maxbits 16
mode "correctness"

}
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cheater.conf

test {
run false
maxbits 16
mode "correctness"

}
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APPENDIX D – Source Code

id.cc

bool Id:: is_summary(const Id & id, bool check_parents) {
uint32_t level = id.y_ >> 27;
uint32_t smask = id.y_ & 0x7FFFFFF;

if (check_parents) {
return smask != 0;

}

return ((1u << (level - 1u)) & smask);
}

Id Id:: calculate_id(bitscnt_t universe) {
Id id;
uint32_t level = bigdata ::log2(universe) + 1;
uint32_t smask = 0x00;

id.y_ = (level << 27) | smask;

return id;
}

Id Id:: calculate_child_id(const Id & parent , bool summary
↪→ , const Natural & index) {
Id id;
uint32_t parent_level = parent.y_ >> 27;
uint32_t parent_smask = parent.y_ & 0x7FFFFFF;

if (parent_level == 1) {
throw std:: runtime_error("Parent␣is␣already␣2^1.␣

↪→ You␣are␣trying␣to␣calculate␣the␣child’s␣Id!
↪→ ");

}
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uint32_t level = parent_level - 1;
uint32_t smask = parent_smask;

if (summary) {
smask |= 1 << (level - 1);
id.id_ = parent.id_;

} else {
id.id_ = parent.id_ | (index << (1u << (level -

↪→ 1)));
}
id.y_ = (level << 27) | smask;

return id;
}

veb_root.cc

void VebRoot :: expand(const Natural & key) {
while (key.bits() > universe_) {

auto start = std:: chrono :: steady_clock ::now();
auto sample = statistic :: include_thread_sample ();
auto aux_universe = universe_;
auto time_couter = std::shared_ptr <void >(NULL , [&

↪→ start ,&sample , aux_universe ](void*){
if (sample != NULL && false == std::

↪→ uncaught_exception ()) {
auto duration = std:: chrono ::

↪→ duration_cast <std:: chrono ::
↪→ microseconds >(std:: chrono ::
↪→ steady_clock ::now() - start);

sample ->normalize_level(aux_universe);
sample ->duration = duration.count ();
statistic :: Statistic ::add(*sample ,

↪→ TreeRpc :: kVeb_expanded);
}

});
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bitscnt_t new_universe = (universe_ > 0) ?
↪→ universe_ << 1 : 1;

std::shared_ptr <IVebGlobal > new_veb;
auto temp_id = std:: make_shared <Id >(Id::

↪→ calculate_id(new_universe));
auto newtuple = factory_ ->create(uuid_ ,

↪→ new_universe , temp_id , server_ , Factory ::
↪→ kTreeAuto , Factory :: kInstanceClient);

new_veb = std:: dynamic_pointer_cast <IVebGlobal >(
↪→ std::get <2>( newtuple));

new_veb ->search(Natural (0)); // make sure is
↪→ created on peer

if (veb_ != NULL) {
new_veb ->expanded(veb_);

}

if (std::get <1>( newtuple) == Factory ::
↪→ kInstanceLocal) {
registry_ ->sign(uuid_ , *new_veb ->id(),

↪→ new_veb);
}

veb_.swap(new_veb);
universe_ = new_universe;
std::swap(id_ , temp_id);

}
}

std::pair <bool , std::shared_ptr <ISerializable >> VebRoot ::
↪→ insert(const Natural & key , std:: shared_ptr <
↪→ ISerializable > value) {

if (!key.is_valid ()) return {};
if (veb_ == NULL || key.bits() > universe_) {

expand(key);
}
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auto start = std:: chrono :: steady_clock ::now();
auto sample = statistic :: include_thread_sample ();
auto time_couter = std::shared_ptr <void >(NULL , [this

↪→ ,&start ,& sample ](void*){
if (sample != NULL && false == std::

↪→ uncaught_exception ()) {
auto duration = std:: chrono :: duration_cast <

↪→ std:: chrono :: microseconds >(std:: chrono
↪→ :: steady_clock ::now() - start);

sample ->normalize_level(universe_);
sample ->duration = duration.count ();
statistic :: Statistic ::add(*sample , TreeRpc ::

↪→ kInsert);
}

});

return veb_ ->insert(key , value);
}

factory.cc

std::tuple <Factory ::TreeType , Factory :: TreeInstanceType ,
↪→ std::shared_ptr <ITree > >

Factory :: create(tree_uuid_t uuid , bitscnt_t universe , std
↪→ ::shared_ptr <const Id > id , std::shared_ptr <Server >
↪→ server , TreeType tree_type , TreeInstanceType
↪→ instance_type) {
if (tree_type == kTreeAuto) {

tree_type = kTreeVeb;
}
if (instance_type == kInstanceAuto) {

instance_type = kInstanceClient;
}
if (instance_type == kInstanceClient) {

auto tree_rpc = std:: make_shared <TreeRpcMulticast
↪→ >(universe , server , uuid , id, false);
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auto new_tree = std:: make_shared <veb::VebClient >(
↪→ universe , id , tree_rpc);

return std:: make_tuple(tree_type , instance_type ,
↪→ new_tree);

} else if (instance_type == kInstanceRemote) {
if (universe == 1) {

auto summary = Id:: is_summary (*id);
if (summary) {

return std:: make_tuple(tree_type ,
↪→ instance_type , std:: make_shared <veb
↪→ :: VebU1SummaryLocal >(universe , id))
↪→ ;

} else {
return std:: make_tuple(tree_type ,

↪→ instance_type , std:: make_shared <veb
↪→ ::VebU1Local >(universe , id));

}
} else {

auto new_tree = std:: make_shared <veb::
↪→ VebRemote >(universe , id , uuid , server ,
↪→ this ->shared_from_this ());

return std:: make_tuple(tree_type ,
↪→ instance_type , new_tree);

}
} else if (instance_type == kInstanceLocal) {

auto summary = Id:: is_summary (*id);
if (summary) {

if (universe == 1) {
return std:: make_tuple(tree_type ,

↪→ instance_type , std:: make_shared <veb
↪→ :: VebU1SummaryLocal >(universe , id))
↪→ ;

} else {
return std:: make_tuple(tree_type ,

↪→ instance_type , std:: make_shared <veb
↪→ :: VebSummaryLocal >(universe , id));

}
} else {
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if (universe == 1) {
return std:: make_tuple(tree_type ,

↪→ instance_type , std:: make_shared <veb
↪→ ::VebU1Local >(universe , id));

} else {
return std:: make_tuple(tree_type ,

↪→ instance_type , std:: make_shared <veb
↪→ ::VebLocal >(universe , id));

}
}

}
return {};

}

statistic.hh

struct Sample : public ISerializable {
// ...
void zero() {

duration = 0;
rmsg_all = 0;
rmsg_timeout = 0;
deeper_level = UINT32_MAX;

}

void update(const Sample & sample) {
rmsg_all += sample.rmsg_all;
rmsg_timeout += sample.rmsg_timeout;
if (sample.deeper_level < deeper_level) {

deeper_level = sample.deeper_level;
}

}

void set_level(bitscnt_t universe) {
if (universe < deeper_level) {

deeper_level = universe;
}

}
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void normalize_level(bitscnt_t root_universe) {
auto base_level = bigdata ::log2(root_universe);
deeper_level = bigdata ::log2(deeper_level);
if (base_level >= deeper_level) {

deeper_level = base_level - deeper_level;
}

}
// ...

};

statistic.cc

static __thread Sample * temp_sample_ = NULL;

std::shared_ptr <Sample > include_thread_sample () {
if (temp_sample_ != NULL) {

return get_thread_sample ();
}
temp_sample_ = new Sample ();
return std::shared_ptr <Sample >( temp_sample_ , [](

↪→ Sample *)
{

delete temp_sample_;
temp_sample_ = NULL;

});
}

std::shared_ptr <Sample > get_thread_sample () {
if (temp_sample_ != NULL) {

return std::shared_ptr <Sample >( temp_sample_ , [](
↪→ Sample *){});

}
return nullptr;

}

void thread_sample_set_level(bitscnt_t universe) {
auto sample = get_thread_sample ();
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if (sample != NULL) {
sample ->set_level(universe);

}
}

void thread_sample_update(const Sample & sample) {
auto s = get_thread_sample ();
if (s != NULL) {

s->update(sample);
}

}

std:: unordered_map <pthread_t , Statistic > Statistic ::
↪→ registry_;

std::mutex Statistic :: registry_mutex_;

tree_rpc_multicast.cc

1 std::tuple <bool , Natural , std::shared_ptr <ISerializable >,
↪→ bitscnt_t >

2 TreeRpcMulticast :: run_method(TreeRpc :: Method method ,
↪→ TreeRpc :: Method answer , const Natural * key , const
↪→ ISerializable * value , const Id * expand_id , std::
↪→ shared_ptr <const AddressInfo > unicast_addr) const {

3 volatile bool ack_received = false;
4 volatile bool got_exception = false;
5 volatile bool got_non_exist = false;
6 volatile bool got_answer = false;
7 std::tuple <bool , Natural , std::shared_ptr <

↪→ ISerializable >, bitscnt_t > ret_value;
8 std:: condition_variable cond;
9 std::mutex mtwait;

10 auto sample = statistic :: get_thread_sample ();
11

12 {
13 std::shared_ptr <ObserverHandle <TreeRpc ::Method >>

↪→ observer;
14 std::shared_ptr <ObserverHandle <TreeRpc ::Method >>
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↪→ observer_ack;
15 std::shared_ptr <ObserverHandle <TreeRpc ::Method >>

↪→ observer_nack;
16

17 observer = server_ ->add(answer , [this , &mtwait ,&
↪→ cond ,&ret_value ,& got_answer ,& sample ]( const
↪→ TreeRpc :: Method &method , const
↪→ ServerDispatchArgs & args) -> bool {

18 std:: unique_lock <std::mutex > lkwait(mtwait);
19 bool handled = false;
20 if (method == TreeRpc :: kControlForceStop) {
21 cond.notify_all ();
22 return false;
23 }
24 try {
25 if (transaction_ == args.transaction) {
26 handled = true;
27 ret_value = std:: make_tuple(args.has ,

↪→ std::move(args.key), nullptr ,
↪→ args.universe);

28 if (sample != NULL && args.sample !=
↪→ NULL) {

29 sample ->update (*args.sample);
30 }
31 got_answer = true;
32 cond.notify_all ();
33

34 // TODO: put on thread pool ?
35 BOOST_LOG_TRIVIAL(trace) << "Sending␣

↪→ method␣" << TreeRpc :: kAckF << "
↪→ ␣with␣transaction␣" << args.
↪→ transaction;

36 this ->reply(args.uuid , args.addr ,
↪→ TreeRpc ::kAckF , args.
↪→ transaction , true , nullptr ,
↪→ nullptr , nullptr);

37 }
38 } catch(const std:: runtime_error & e) {
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39 std::cerr << e.what() << std::endl;
40 } catch (...) {
41 }
42 return handled;
43 });
44

45 observer_ack = server_ ->add(kAck , [this ,&mtwait ,&
↪→ cond ,& ack_received ](const TreeRpc :: Method &
↪→ method , const ServerDispatchArgs & args) ->
↪→ bool {

46 std:: unique_lock <std::mutex > lkwait(mtwait);
47 bool handled = false;
48 if (method == TreeRpc :: kControlForceStop) {
49 cond.notify_all ();
50 return false;
51 }
52 try {
53 if (transaction_ == args.transaction) {
54 if (false == ack_received) {
55 cond.notify_all ();
56 }
57 handled = true;
58 ack_received = true;
59 }
60 } catch(const std:: runtime_error & e) {
61 std::cerr << e.what() << std::endl;
62 } catch (...) {
63 }
64 return handled;
65 });
66

67

68 observer_nack = server_ ->add(kNack , [this ,&mtwait
↪→ ,&cond ,& got_exception ,& got_non_exist ]( const
↪→ TreeRpc :: Method &method , const
↪→ ServerDispatchArgs & args) -> bool {

69 std:: unique_lock <std::mutex > lkwait(mtwait);
70 bool handled = false;
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71 if (method == TreeRpc :: kControlForceStop) {
72 cond.notify_all ();
73 return false;
74 }
75 try {
76 if (transaction_ == args.transaction) {
77 handled = true;
78 got_exception = args.has;
79 got_non_exist = !got_exception;
80 cond.notify_all ();
81 if (got_exception) {
82 BOOST_LOG_TRIVIAL(warning) << "

↪→ Got␣a␣Nack␣exception";
83 } else {
84 BOOST_LOG_TRIVIAL(trace) << "Got␣

↪→ a␣Nack␣not␣exist";
85 }
86 }
87 } catch(const std:: runtime_error & e) {
88 std::cerr << e.what() << std::endl;
89 } catch (...) {
90 }
91 return handled;
92 });
93

94 {
95 std:: unique_lock <std::mutex > lkwait(mtwait ,

↪→ std:: defer_lock);
96 std:: unique_lock <std:: recursive_mutex >

↪→ lk_channel ((server_ ->channel ())->mutex
↪→ (), std:: defer_lock);

97

98 lkwait.lock();
99

100 for(auto retries =0; retries <= Properties ::
↪→ get_instance ()->retries (); retries ++) {

101 lkwait.unlock ();
102 lk_channel.lock();
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103 process(method , retries == 0, key , value ,
↪→ expand_id);

104 BOOST_LOG_TRIVIAL(trace) << "Sending␣
↪→ method␣" << method << "␣with␣
↪→ transaction␣" << transaction_ << "␣
↪→ retry␣" << retries;

105 (server_ ->channel ())->sync(unicast_addr);
106 lk_channel.unlock ();
107 lkwait.lock();
108

109 if (sample != NULL) {
110 sample ->rmsg_all ++;
111 }
112

113 if (got_non_exist == true) {
114 break;
115 }
116

117 if (got_exception) {
118 BOOST_LOG_TRIVIAL(error) << "Universe

↪→ ␣" << universe_ << "␣Id␣" <<
↪→ id_ << "␣Transaction␣" <<
↪→ transaction_ << "␣Method␣" <<
↪→ method << "␣peer␣Nack␣exception
↪→ ";

119 throw std:: runtime_error("Peer␣got␣an
↪→ ␣exception");

120 }
121 if (got_non_exist) {
122 BOOST_LOG_TRIVIAL(trace) << "Universe

↪→ ␣" << universe_ << "␣Id␣" <<
↪→ id_ << "␣Transaction␣" <<
↪→ transaction_ << "␣Method␣" <<
↪→ method << "␣peer␣Nack␣doesnt␣
↪→ exists";

123 throw exception_peer_not_exist ();
124 }
125
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126 if (ack_received == false) {
127 if (retries > 0) {
128 if (sample != NULL) {
129 sample ->rmsg_timeout ++;
130 }
131 }
132 BOOST_LOG_TRIVIAL(trace) << "Universe

↪→ ␣" << universe_ << "␣Id␣" <<
↪→ id_ << "␣Transaction␣" <<
↪→ transaction_ << "␣Method␣" <<
↪→ method << "␣wating␣for␣ack";

133 cond.wait_for(lkwait , std:: chrono ::
↪→ milliseconds(Properties ::
↪→ get_instance ()->timeout ()));

134 if (server_ ->exiting ()) {
135 throw std:: runtime_error("Server␣

↪→ is␣exiting");
136 }
137 } else {
138 break;
139 }
140

141 if (got_non_exist == true) {
142 break;
143 }
144

145 if (got_exception) {
146 BOOST_LOG_TRIVIAL(error) << "Universe

↪→ ␣" << universe_ << "␣Id␣" <<
↪→ id_ << "␣Transaction␣" <<
↪→ transaction_ << "␣Method␣" <<
↪→ method << "␣peer␣Nack␣exception
↪→ ";

147 throw std:: runtime_error("Peer␣got␣an
↪→ ␣exception");

148 }
149 if (got_non_exist) {
150 BOOST_LOG_TRIVIAL(trace) << "Universe
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↪→ ␣" << universe_ << "␣Id␣" <<
↪→ id_ << "␣Transaction␣" <<
↪→ transaction_ << "␣Method␣" <<
↪→ method << "␣peer␣Nack␣doesnt␣
↪→ exists";

151 throw exception_peer_not_exist ();
152 }
153 if (ack_received) {
154 break;
155 }
156 }
157

158 if (ack_received == false) {
159 BOOST_LOG_TRIVIAL(trace) << "Universe␣"

↪→ << universe_ << "␣Id␣" << id_ << "␣
↪→ Transaction␣" << transaction_ << "␣
↪→ Method␣" << method << "␣got␣no␣ack"
↪→ ;

160 throw exception_peer_timedout("We␣got␣no
↪→ ␣Ack");

161 }
162

163 lkwait.unlock ();
164 observer_ack.reset();
165 lkwait.lock();
166

167

168 if (got_answer == false) {
169 std:: cv_status waitres;
170

171 if (got_exception) {
172 BOOST_LOG_TRIVIAL(error) << "Universe

↪→ ␣" << universe_ << "␣Id␣" <<
↪→ id_ << "␣Transaction␣" <<
↪→ transaction_ << "␣Method␣" <<
↪→ method << "␣peer␣Nack␣exception
↪→ ␣after␣the␣ack";

173 throw std:: runtime_error("Peer␣got␣an
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↪→ ␣exception");
174 }
175 if (got_non_exist) {
176 BOOST_LOG_TRIVIAL(error) << "Universe

↪→ ␣" << universe_ << "␣Id␣" <<
↪→ id_ << "␣Transaction␣" <<
↪→ transaction_ << "␣Method␣" <<
↪→ method << "␣peer␣Nack␣doesnt␣
↪→ exists␣after␣the␣ack";

177 throw std:: runtime_error("Weird.␣
↪→ Peer␣sent␣ack␣but␣answer.␣
↪→ Actually␣we␣got␣’got_non_exist ’
↪→ ␣after␣an␣Ack");

178 }
179

180 uint32_t expected_jumps = universe_ > 1 ?
↪→ log2(universe_) : 1;

181 expected_jumps *= Properties ::
↪→ get_instance ()->jump_multi (); //
↪→ let’s assume there might be a
↪→ missing at each level

182 uint32_t timeout = Properties ::
↪→ get_instance ()->timeout () *
↪→ expected_jumps;

183 timeout *= Properties :: get_instance ()->
↪→ retries () + 1;

184

185 BOOST_LOG_TRIVIAL(trace) << "Universe␣"
↪→ << universe_ << "␣Id␣" << id_ << "␣
↪→ Transaction␣" << transaction_ << "␣
↪→ Method␣" << method << "␣got␣ack␣but
↪→ ␣result.␣Let’s␣wait␣for␣" <<
↪→ timeout << "␣ms";

186 waitres = cond.wait_for(lkwait , std::
↪→ chrono :: milliseconds(timeout));

187 if (server_ ->exiting ()) {
188 throw std:: runtime_error("Server␣is␣

↪→ exiting");
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189 }
190

191 if (got_answer == false) {
192 BOOST_LOG_TRIVIAL(error) << "Universe

↪→ ␣" << universe_ << "␣Id␣" <<
↪→ id_ << "␣Transaction␣" <<
↪→ transaction_ << "␣Method␣" <<
↪→ method << "␣long␣wait␣finished␣
↪→ without␣answer␣and␣with␣" << (
↪→ std:: cv_status :: timeout ==
↪→ waitres ? "timeout" : "result")
↪→ ;

193 if (got_exception) {
194 BOOST_LOG_TRIVIAL(error) << "

↪→ Universe␣" << universe_ <<
↪→ "␣Id␣" << id_ << "␣
↪→ Transaction␣" <<
↪→ transaction_ << "␣Method␣"
↪→ << method << "␣peer␣Nack␣
↪→ exception␣after␣long␣wait";

195 throw std:: runtime_error("Peer␣
↪→ got␣an␣exception");

196 }
197 if (got_non_exist) {
198 BOOST_LOG_TRIVIAL(error) << "

↪→ Universe␣" << universe_ <<
↪→ "␣Id␣" << id_ << "␣
↪→ Transaction␣" <<
↪→ transaction_ << "␣Method␣"
↪→ << method << "␣peer␣Nack␣
↪→ doesnt␣exists␣after␣long␣
↪→ wait";

199 throw std:: runtime_error("Weird.
↪→ ␣Peer␣sent␣ack␣but␣answer.␣
↪→ Actually␣we␣got␣’
↪→ got_non_exist ’␣after␣an␣Ack
↪→ ␣and␣long␣wait");

200 }
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201 BOOST_LOG_TRIVIAL(error) << "Universe
↪→ ␣" << universe_ << "␣Id␣" <<
↪→ id_ << "␣Transaction␣" <<
↪→ transaction_ << "␣Method␣" <<
↪→ method << "␣after␣long␣wait ,␣
↪→ got␣nothing";

202 throw std:: runtime_error("Peer␣ack␣
↪→ and␣then␣not␣responded");

203 }
204 }
205 }
206 }
207

208 return ret_value;
209 }

flowcontrol.cc

1 namespace bigdata {
2

3 static volatile int32_t last_step_ = 0;
4 static int32_t consecutive_ok_ = 0;
5 static std::mutex mutex_;
6

7 static std:: mt19937 generator_;
8

9 uint32_t FlowControl :: timeout () {
10 std::lock_guard <std::mutex > lkg(mutex_);
11 static auto inited = false;
12 if (! inited) {
13 struct timeval tv;
14 gettimeofday (&tv, NULL);
15 generator_.seed(getpid () ^ tv.tv_usec);
16

17 inited = true;
18 }
19

20 uint32_t timeout = Properties :: get_instance ()->



168 APPENDIX D. Source Code

↪→ timeout ();
21

22 if (last_step_ > 0) {
23 timeout *= 1 << last_step_;
24 uint32_t val = generator_ () % ((( timeout / 2) +

↪→ 1) | 1) ;
25 timeout += val;
26 }
27

28 return timeout;
29 }
30

31 void FlowControl :: timeout_feedback(bool timeout) {
32 std::lock_guard <std::mutex > lkg(mutex_);
33

34 if (timeout) {
35 if (last_step_ < Properties :: get_instance ()->

↪→ retries ()) {
36 last_step_ ++;
37 BOOST_LOG_TRIVIAL(trace) << "last_step_␣

↪→ incremented␣to␣" << last_step_;
38 }
39 consecutive_ok_ = 0;
40 } else {
41 consecutive_ok_ ++;
42 if (consecutive_ok_ >= 4) {
43 consecutive_ok_ = 4;
44 if (last_step_ > 0) {
45 last_step_ --;
46 BOOST_LOG_TRIVIAL(trace) << "last_step_␣

↪→ decremented␣to␣" << last_step_;
47 consecutive_ok_ = 0;
48 }
49 }
50 }
51 }
52

53 uint32_t FlowControl :: long_timeout(bitscnt_t universe) {
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54 uint32_t expected_jumps = universe > 1 ? log2(
↪→ universe) : 1;

55 expected_jumps *= Properties :: get_instance ()->
↪→ jump_multi (); // let’s assume there might be a
↪→ missing at each level

56

57 auto max_step = 1 << Properties :: get_instance ()->
↪→ retries ();

58 uint32_t timeout = Properties :: get_instance ()->
↪→ timeout () * max_step;

59 timeout += (( timeout / 2) + 1) | 1;
60 timeout *= Properties :: get_instance ()->retries ()+1;
61 timeout *= expected_jumps;
62

63 return timeout;
64 }
65

66 }

test.cc

1 template <class T>
2 static void test_sanity(std::vector <T> & tdata) {
3 int32_t i=0;
4 const int32_t print_each = 100;
5

6 BOOST_LOG_TRIVIAL(info) << "Correctness␣test";
7

8 for (auto v : tdata) {
9 if (quitting_) return;

10 if ((i++ % print_each) == print_each - 1) {
11 std::cout << std::endl;
12 BOOST_LOG_TRIVIAL(info) << "inserting␣" << i

↪→ << ’/’ << tdata.size();
13 } else {
14 std::cout << ’.’ << std:: flush;
15 }
16 auto h = std::get <0>(root_ ->insert(bigdata ::
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↪→ Natural(v), {}));
17 BOOST_CHECK_MESSAGE(h == false , v.to_string () + "

↪→ ␣(insert)found");
18 }
19 std::cout << std::endl;
20

21 std::sort(tdata.begin(), tdata.end());
22

23 BOOST_LOG_TRIVIAL(info) << "search";
24

25 for (auto v=0u; v < tdata.size(); v++) {
26 if (quitting_) return;
27 if (v % print_each == print_each - 1) {
28 std::cout << std::endl;
29 BOOST_LOG_TRIVIAL(info) << "search␣" << v <<

↪→ ’/’ << tdata.size();
30 } else {
31 std::cout << ’.’ << std:: flush;
32 }
33 auto k = root_ ->search(bigdata :: Natural(tdata[v])

↪→ ).first;
34 BOOST_CHECK_MESSAGE(k == true , tdata[v]. to_string

↪→ () + "␣not␣found");
35 }
36 std::cout << std::endl;
37

38 BOOST_CHECK_MESSAGE(root_ ->min().first == tdata [0],
↪→ root_ ->min().first.to_string () + "␣(min)!=" +
↪→ tdata [0]. to_string ());

39 BOOST_CHECK_MESSAGE(root_ ->max().first == tdata[tdata
↪→ .size() -1], root_ ->max().first.to_string () + "␣
↪→ (max)!=" + tdata[tdata.size() -1]. to_string ());

40

41 BOOST_LOG_TRIVIAL(info) << "predecessor";
42

43 for (auto v=1u; v < tdata.size(); v++) {
44 if (quitting_) return;
45 if (v % print_each == print_each - 1) {



171

46 std::cout << std::endl;
47 BOOST_LOG_TRIVIAL(info) << "predecessor␣" <<

↪→ v << ’/’ << tdata.size();
48 } else {
49 std::cout << ’.’ << std:: flush;
50 }
51 bigdata :: Natural p = root_ ->predecessor(bigdata ::

↪→ Natural(tdata[v])).first;
52 BOOST_CHECK_MESSAGE(p == tdata[v-1], p.to_string

↪→ () + "␣(predecessor)!=␣" + tdata[v-1].
↪→ to_string ());

53 }
54 std::cout << std::endl;
55

56 BOOST_LOG_TRIVIAL(info) << "successor";
57

58 for (auto v=0u; v < tdata.size() -1; v++) {
59 if (quitting_) return;
60 if (v % print_each == print_each - 1) {
61 std::cout << std::endl;
62 BOOST_LOG_TRIVIAL(info) << "successor␣" << v

↪→ << ’/’ << tdata.size();
63 } else {
64 std::cout << ’.’ << std:: flush;
65 }
66 bigdata :: Natural s = root_ ->successor(bigdata ::

↪→ Natural(tdata[v])).first;
67 BOOST_CHECK_MESSAGE(s == tdata[v+1], s.to_string

↪→ () + "␣(successor)!=␣" + tdata[v+1].
↪→ to_string ());

68 }
69 std::cout << std::endl;
70

71 BOOST_LOG_TRIVIAL(info) << "deleting/searching";
72

73 std:: random_shuffle(tdata.begin (), tdata.end());
74

75 for (auto v=0u; v < tdata.size(); v++) {
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76 if (quitting_) return;
77 if (v % print_each == print_each - 1) {
78 std::cout << std::endl;
79 BOOST_LOG_TRIVIAL(info) << "deleting/

↪→ searching␣" << v << ’/’ << tdata.size()
↪→ ;

80 } else {
81 std::cout << ’.’ << std:: flush;
82 }
83 root_ ->remove(bigdata :: Natural(tdata[v]));
84 auto k = root_ ->search(bigdata :: Natural(tdata[v])

↪→ ).first;
85 if (k) {
86 root_ ->remove(bigdata :: Natural(tdata[v]));
87 k = root_ ->search(bigdata :: Natural(tdata[v]))

↪→ .first;
88 }
89 BOOST_CHECK_MESSAGE(k == false , tdata[v].

↪→ to_string () + "␣found");
90 }
91 std::cout << std::endl;
92

93 BOOST_CHECK_MESSAGE(root_ ->min().first.is_valid () ==
↪→ false , root_ ->min().first.to_string () + "␣(min)
↪→ ␣not␣empty");

94 BOOST_CHECK_MESSAGE(root_ ->max().first.is_valid () ==
↪→ false , root_ ->max().first.to_string () + "␣(max)
↪→ ␣not␣empty");

95 }
96

97 static void test_performance(bigdata :: TreeRpc :: Method
↪→ method , const std:: unordered_set <bigdata ::Natural >
↪→ & keys , int32_t index , const int32_t
↪→ num_collect_statistic) {

98 const int print_header_each = 100;
99

100 BOOST_LOG_TRIVIAL(info) << "Performance␣test";
101
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102 auto it = std::next(keys.begin(), index);
103

104 for(auto count =0; count < num_collect_statistic && it
↪→ != keys.end(); it++, count ++) {

105 while(paused_) {
106 if (quitting_) return;
107 usleep (100 * 1000);
108 }
109 if (quitting_) return;
110

111 if (std:: distance(keys.begin(), it) %
↪→ print_header_each == 0) {

112 std::cout << std::endl;
113 BOOST_LOG_TRIVIAL(info) << method << "␣-␣" <<

↪→ std:: distance(keys.begin(), it) + 1 <<
↪→ "/" << keys.size();

114 } else {
115 std::cout << ’.’ << std:: flush;
116 }
117 BOOST_LOG_TRIVIAL(trace) << "Key␣under␣test␣(" <<

↪→ method << ")␣" << *it;
118

119 switch (method) {
120 case bigdata :: TreeRpc :: kInsert:
121 root_ ->insert (*it, {});
122 break;
123 case bigdata :: TreeRpc :: kSearch:
124 root_ ->search (*it);
125 break;
126 case bigdata :: TreeRpc :: kSuccessor:
127 root_ ->successor (*it);
128 break;
129 case bigdata :: TreeRpc :: kPredecessor:
130 root_ ->predecessor (*it);
131 break;
132 case bigdata :: TreeRpc :: kRemove:
133 root_ ->remove (*it);
134 break;



174 APPENDIX D. Source Code

135 default:
136 throw std:: runtime_error("Not␣testing␣method␣

↪→ " + bigdata :: TreeRpc :: to_string(method)
↪→ );

137 }
138 }
139

140 std::cout << std::endl;
141 BOOST_LOG_TRIVIAL(info) << method << "␣From␣" <<

↪→ index + 1 << "␣to␣" << std:: distance(keys.begin
↪→ (), it);

142 }
143

144 static void test() {
145 bigdata :: statistic :: Statistic :: include ();
146 std:: unordered_set <bigdata ::Natural > keys;
147 const int32_t numinsert = 65535; // UINT64_MAX;
148 const int32_t num_collect_statistic = 2000;
149 BOOST_LOG_TRIVIAL(debug) << "

↪→ test_tree_correctness_big_no_check";
150

151 bigdata :: Natural ::Seed seed;
152 int32_t i = 0;
153

154 try {
155 while(keys.size() < numinsert) {
156 if (quitting_) return;
157 keys.insert(bigdata :: Natural :: random(seed ,

↪→ bigdata :: Properties :: get_instance ()->
↪→ test_maxbits ()));

158 }
159

160 BOOST_LOG_TRIVIAL(info) << "preparing␣input␣data
↪→ ...";

161

162 if (bigdata :: Properties :: get_instance ()->
↪→ test_mode () == "correctness") {

163 std::vector <bigdata ::Natural > correctness(
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↪→ keys.size());
164 std::copy(keys.begin (), keys.end(),

↪→ correctness.begin ());
165 BOOST_LOG_TRIVIAL(info) << "input␣data␣ready"

↪→ ;
166 test_sanity(correctness);
167 return;
168 }
169

170 BOOST_LOG_TRIVIAL(info) << "input␣data␣ready";
171

172 for(int32_t i=0, s=0; i < static_cast <int32_t >(
↪→ keys.size()); i += num_collect_statistic , s
↪→ ++) {

173 int32_t n = num_collect_statistic;
174 if (n > static_cast <int32_t >(keys.size()) - i

↪→ ) {
175 n = static_cast <int32_t >(keys.size()) - i

↪→ ;
176 }
177 if (n > 0) {
178 test_performance(bigdata :: TreeRpc ::

↪→ kInsert , keys , i, n);
179 test_performance(bigdata :: TreeRpc ::

↪→ kSuccessor , keys , i, n);
180 test_performance(bigdata :: TreeRpc ::

↪→ kPredecessor , keys , i, n);
181 test_performance(bigdata :: TreeRpc ::

↪→ kSearch , keys , i, n);
182

183 std::cout << bigdata :: statistic ::
↪→ Statistic ::get();

184 bigdata :: statistic :: Statistic ::get().save
↪→ (s+1);

185 bigdata :: statistic :: Statistic ::zero();
186 }
187 }
188
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189 for(int32_t i=0, s=0; i < static_cast <int32_t >(
↪→ keys.size()); i += num_collect_statistic , s
↪→ ++) {

190 int32_t n = num_collect_statistic;
191 if (n > static_cast <int32_t >(keys.size()) - i

↪→ ) {
192 n = static_cast <int32_t >(keys.size()) - i

↪→ ;
193 }
194 if (n > 0) {
195 test_performance(bigdata :: TreeRpc ::

↪→ kRemove , keys , i,
↪→ num_collect_statistic);

196

197 std::cout << bigdata :: statistic ::
↪→ Statistic ::get();

198 bigdata :: statistic :: Statistic ::get().save
↪→ (s+1);

199 bigdata :: statistic :: Statistic ::zero();
200 }
201 }
202

203 } catch (const std:: runtime_error & e) {
204 BOOST_LOG_TRIVIAL(fatal) << "Except␣with␣i␣=␣" <<

↪→ i << ".␣" << e.what();
205 throw e;
206 } catch (...) {
207 BOOST_LOG_TRIVIAL(fatal) << "Except␣with␣i␣=␣" <<

↪→ i << ".";
208 throw;
209 }
210 }

natural.hh

1 namespace std
2 {
3 template <>
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4 struct hash <bigdata ::Natural >
5 {
6 size_t operator ()(bigdata :: Natural const& natural

↪→ ) const
7 {
8 size_t hash = 0x00;
9 if (natural.value_ != 0) {

10 size_t count = mpz_size(natural.value_ ->
↪→ n_);

11 const mp_limb_t * limbs = mpz_limbs_read
↪→ (natural.value_ ->n_);

12 for (auto c=0u; c < count; c++) {
13 uint64_t limb = limbs[c];
14 boost:: hash_combine(hash , limb & 0

↪→ xFFFFFFFF);
15 boost:: hash_combine(hash , (limb >>

↪→ 32) & 0xFFFFFFFF);
16 }
17 }
18 return hash;
19 }
20 };
21 }

veb.cc

1 std::tuple <bool , std::shared_ptr <ISerializable >, bool >
↪→ Veb:: insert(const Natural & key , std::shared_ptr <
↪→ ISerializable > value) {

2

3 statistic :: thread_sample_set_level(universe_);
4 // BOOST_LOG_TRIVIAL(trace) << std::hex << "Inserting

↪→ " << key << " at " << *id_ << std::dec << "("
↪→ << universe_ << ")";

5

6 if (UNLIKELY(key.bits() > universe_)) {
7 throw std:: runtime_error("k.bits()=" + std::

↪→ to_string(key.bits()) + "␣is␣bigger␣than␣
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↪→ universe =2^" + std:: to_string(universe_));
8 }
9 if (UNLIKELY (!key.is_valid ())) {

10 throw std:: runtime_error("Key␣is␣not␣valid.");
11 }
12

13 std::pair <bool , std::shared_ptr <ISerializable >>
↪→ ret_data;

14

15 if (min().first.is_valid () == false) {
16 set_min(std:: make_pair(key , value));
17 set_max(min());
18 return {};
19 }
20

21 if (key == min().first) { // allow replace
22 ret_data = set_min(std:: make_pair(key , value));
23 if (key == max().first) {
24 set_max(min());
25 }
26 return std:: make_tuple(ret_data.first , ret_data.

↪→ second , true);
27 }
28

29 Natural high;
30 Natural low;
31

32 if (key < min().first) {
33 high = min().first.high(universe_ >> 1);
34 low = min().first.low(universe_ >> 1);
35 set_min(std:: make_pair(key , value));
36 } else {
37 high = key.high(universe_ >> 1);
38 low = key.low(universe_ >> 1);
39 }
40

41 bool there_was_something = false;
42 std::tie(ret_data.first , ret_data.second ,
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↪→ there_was_something) = cluster ()->insert(high ,
↪→ low , value);

43 if (false == there_was_something) {
44 summary ()->insert(high , {}); // if this happen ,

↪→ insert bellow will be constant -time (null
↪→ min)

45 }
46

47 if (key >= max().first) {
48 set_max(std:: make_pair(key , value));
49 }
50

51 return std:: make_tuple(ret_data.first , ret_data.
↪→ second , true);

52 }
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